本文涉及知识点
C++图论 离散化
P9981 [USACO23DEC] Minimum Longest Trip G
题目描述
Bessie 正在奶牛大陆上旅行。奶牛大陆由从 1 1 1 到 N N N 编号的 N N N( 2 ≤ N ≤ 2 ⋅ 10 5 2 \le N \le 2\cdot 10^5 2≤N≤2⋅105)座城市和 M M M( 1 ≤ M ≤ 4 ⋅ 10 5 1 \le M \le 4\cdot 10^5 1≤M≤4⋅105)条单向道路组成。第 i i i 条路从城市 a i a_i ai 通向城市 b i b_i bi,标签为 l i l_i li。
由城市 x 0 x_0 x0 开始的长度为 k k k 的旅程被定义为一个城市序列 x 0 , x 1 , … , x k x_0,x_1,\ldots,x_k x0,x1,…,xk,对于所有的 0 ≤ i < k 0 \le i < k 0≤i<k,存在由城市 x i x_i xi 到 x i + 1 x_{i+1} xi+1 的路。保证在奶牛大路上不存在长度无限的旅程,不存在两条路连接一对相同的城市。
对于每座城市,Bessie 想知道从它开始的最长旅程。对于一些城市,从它们开始的最长旅程不唯一,Bessie 将选择其中道路标签序列字典序更小的旅程。一个序列比等长的另一个序列字典序更小,当且仅当在它们不同的第一个位置,前者比后者的元素更小。
输出 Bessie 在每座城市选择的旅途的长度和道路标签之和。
输入格式
第一行包含 N N N 和 M M M。
接下来 M M M 行,每行三个整数 a i , b i , l i a_i,b_i,l_i ai,bi,li,代表一条由 a i a_i ai 到 b i b_i bi,标签为 l i l_i li 的单向道路。
输出格式
输出 N N N 行,第 i i i 行包含由空格分隔的两个整数,表示 Bessie 选择的从城市 i i i 开始的旅程的长度和道路标签之和。
输入输出样例 #1
输入 #1
4 5
4 3 10
4 2 10
3 1 10
2 1 10
4 1 10
输出 #1
0 0
1 10
1 10
2 20
输入输出样例 #2
输入 #2
4 5
4 3 4
4 2 2
3 1 5
2 1 10
4 1 1
输出 #2
0 0
1 10
1 5
2 12
输入输出样例 #3
输入 #3
4 5
4 3 2
4 2 2
3 1 5
2 1 10
4 1 1
输出 #3
0 0
1 10
1 5
2 7
输入输出样例 #4
输入 #4
4 5
4 3 2
4 2 2
3 1 10
2 1 5
4 1 1
输出 #4
0 0
1 5
1 10
2 7
说明/提示
样例解释 2
在下面的解释中,我们用 a i → l i b i a_i\xrightarrow{l_i} b_i ailibi 表示由城市 a i a_i ai 通往 b i b_i bi,标签为 l i l_i li 的单向道路。
从城市 4 4 4 出发有多条旅程,包含 4 → 4 3 → 5 1 4\xrightarrow{4} 3\xrightarrow 5 1 44351, 4 → 1 1 4\xrightarrow 1 1 411 和 4 → 2 2 → 10 1 4\xrightarrow 2 2\xrightarrow{10} 1 422101。在这些旅程中, 4 → 4 3 → 5 1 4\xrightarrow{4} 3\xrightarrow 5 1 44351 和 4 → 2 2 → 10 1 4\xrightarrow 2 2\xrightarrow{10} 1 422101 是最长的。它们的长度均为 2 2 2,道路标签序列分别为 [ 4 , 5 ] [4,5] [4,5] 和 [ 2 , 10 ] [2,10] [2,10]。 [ 2 , 10 ] [2,10] [2,10] 是字典序更小的那一个,它的和为 12 12 12。
测试点性质
- 测试点 5 − 6 5-6 5−6 满足所有道路的标签相同。
- 测试点 7 − 8 7-8 7−8 满足所有道路的标签不相同。
- 测试点 9 − 10 9-10 9−10 满足 N , M ≤ 5000 N,M \le 5000 N,M≤5000。
- 测试点 11 − 20 11-20 11−20 没有额外限制。
拓扑排序
路径相同,取标签字典序小的。如果标签相等,则取任意路径,结果都一样。
如果没有叶子节点,长度为0,标签和也为0。
如果有子节点,取长度最大的节点。如果有多个长度最大的字节点,取字典序最小的。如果记录整个序列,那复杂度是O(n),总复杂度:O(nn),超过时间限制。
解决方案:
叶子节点是0层,其它节点的层次= 1 + max(子节点的层次)。
我们不需要记录整理个序列,只需要记录同层次各节点的顺序。
sort[i] = (i到j的标签)*108+sort[j] ,j是i的子节点。处理完一层后,对此层节点离散化。这样可以确保 sort[j] < N。
每个节点包括三个信息{最大长度,对应序列和,sort}
分三大步:
一,利用拓扑排序,求各节点层次leve。
二,求个层次包括哪些节点leveNodes。
三,从第0层开始处理。
a,更新结果。
b,离散化。
代码
核心代码
#include <iostream>
#include <sstream>
#include <vector>
#include<map>
#include<unordered_map>
#include<set>
#include<unordered_set>
#include<string>
#include<algorithm>
#include<functional>
#include<queue>
#include <stack>
#include<iomanip>
#include<numeric>
#include <math.h>
#include <climits>
#include<assert.h>
#include<cstring>
#include<list>
#include <bitset>
using namespace std;
template<class T1, class T2>
std::istream& operator >> (std::istream& in, pair<T1, T2>& pr) {
in >> pr.first >> pr.second;
return in;
}
template<class T1, class T2, class T3 >
std::istream& operator >> (std::istream& in, tuple<T1, T2, T3>& t) {
in >> get<0>(t) >> get<1>(t) >> get<2>(t);
return in;
}
template<class T1, class T2, class T3, class T4 >
std::istream& operator >> (std::istream& in, tuple<T1, T2, T3, T4>& t) {
in >> get<0>(t) >> get<1>(t) >> get<2>(t) >> get<3>(t);
return in;
}
template<class T = int>
vector<T> Read() {
int n;
cin >> n;
vector<T> ret(n);
for (int i = 0; i < n; i++) {
cin >> ret[i];
}
return ret;
}
template<class T = int>
vector<T> ReadNotNum() {
vector<T> ret;
T tmp;
while (cin >> tmp) {
ret.emplace_back(tmp);
if ('\n' == cin.get()) { break; }
}
return ret;
}
template<class T = int>
vector<T> Read(int n) {
vector<T> ret(n);
for (int i = 0; i < n; i++) {
cin >> ret[i];
}
return ret;
}
template<int N = 1'000'000>
class COutBuff
{
public:
COutBuff() {
m_p = puffer;
}
template<class T>
void write(T x) {
int num[28], sp = 0;
if (x < 0)
*m_p++ = '-', x = -x;
if (!x)
*m_p++ = 48;
while (x)
num[++sp] = x % 10, x /= 10;
while (sp)
*m_p++ = num[sp--] + 48;
AuotToFile();
}
void writestr(const char* sz) {
strcpy(m_p, sz);
m_p += strlen(sz);
AuotToFile();
}
inline void write(char ch)
{
*m_p++ = ch;
AuotToFile();
}
inline void ToFile() {
fwrite(puffer, 1, m_p - puffer, stdout);
m_p = puffer;
}
~COutBuff() {
ToFile();
}
private:
inline void AuotToFile() {
if (m_p - puffer > N - 100) {
ToFile();
}
}
char puffer[N], * m_p;
};
template<int N = 1'000'000>
class CInBuff
{
public:
inline CInBuff() {}
inline CInBuff<N>& operator>>(char& ch) {
FileToBuf();
ch = *S++;
return *this;
}
inline CInBuff<N>& operator>>(int& val) {
FileToBuf();
int x(0), f(0);
while (!isdigit(*S))
f |= (*S++ == '-');
while (isdigit(*S))
x = (x << 1) + (x << 3) + (*S++ ^ 48);
val = f ? -x : x; S++;//忽略空格换行
return *this;
}
inline CInBuff& operator>>(long long& val) {
FileToBuf();
long long x(0); int f(0);
while (!isdigit(*S))
f |= (*S++ == '-');
while (isdigit(*S))
x = (x << 1) + (x << 3) + (*S++ ^ 48);
val = f ? -x : x; S++;//忽略空格换行
return *this;
}
template<class T1, class T2>
inline CInBuff& operator>>(pair<T1, T2>& val) {
*this >> val.first >> val.second;
return *this;
}
template<class T1, class T2, class T3>
inline CInBuff& operator>>(tuple<T1, T2, T3>& val) {
*this >> get<0>(val) >> get<1>(val) >> get<2>(val);
return *this;
}
template<class T1, class T2, class T3, class T4>
inline CInBuff& operator>>(tuple<T1, T2, T3, T4>& val) {
*this >> get<0>(val) >> get<1>(val) >> get<2>(val) >> get<3>(val);
return *this;
}
template<class T = int>
inline CInBuff& operator>>(vector<T>& val) {
int n;
*this >> n;
val.resize(n);
for (int i = 0; i < n; i++) {
*this >> val[i];
}
return *this;
}
template<class T = int>
vector<T> Read(int n) {
vector<T> ret(n);
for (int i = 0; i < n; i++) {
*this >> ret[i];
}
return ret;
}
template<class T = int>
vector<T> Read() {
vector<T> ret;
*this >> ret;
return ret;
}
private:
inline void FileToBuf() {
const int canRead = m_iWritePos - (S - buffer);
if (canRead >= 100) { return; }
if (m_bFinish) { return; }
for (int i = 0; i < canRead; i++)
{
buffer[i] = S[i];//memcpy出错
}
m_iWritePos = canRead;
buffer[m_iWritePos] = 0;
S = buffer;
int readCnt = fread(buffer + m_iWritePos, 1, N - m_iWritePos, stdin);
if (readCnt <= 0) { m_bFinish = true; return; }
m_iWritePos += readCnt;
buffer[m_iWritePos] = 0;
S = buffer;
}
int m_iWritePos = 0; bool m_bFinish = false;
char buffer[N + 10], * S = buffer;
};
class KMP
{
public:
virtual int Find(const string& s, const string& t)
{
CalLen(t);
for (int i1 = 0, j = 0; i1 < s.length(); )
{
for (; (j < t.length()) && (i1 + j < s.length()) && (s[i1 + j] == t[j]); j++);
//i2 = i1 + j 此时s[i1,i2)和t[0,j)相等 s[i2]和t[j]不存在或相等
//t[0,j)的结尾索引是j-1,所以最长公共前缀为m_vLen[j-1],简写为y 则t[0,y)等于t[j-y,j)等于s[i2-y,i2)
if (0 == j)
{
i1++;
continue;
}
const int i2 = i1 + j;
j = m_vLen[j - 1];
i1 = i2 - j;//i2不变
}
return -1;
}
//vector<int> m_vSameLen;//m_vSame[i]记录 s[i...]和t[0...]最长公共前缀,增加可调试性 部分m_vSameLen[i]会缺失
//static vector<int> Next(const string& s)
//{// j = vNext[i] 表示s[0,i]的最大公共前后缀是s[0,j]
// const int len = s.length();
// vector<int> vNext(len, -1);
// for (int i = 1; i < len; i++)
// {
// int next = vNext[i - 1];
// while ((-1 != next) && (s[next + 1] != s[i]))
// {
// next = vNext[next];
// }
// vNext[i] = next + (s[next + 1] == s[i]);
// }
// return vNext;
//}
const vector<int> CalLen(const string& str)
{
m_vLen.resize(str.length());
for (int i = 1; i < str.length(); i++)
{
int next = m_vLen[i - 1];
while (str[next] != str[i])
{
if (0 == next)
{
break;
}
next = m_vLen[next - 1];
}
m_vLen[i] = next + (str[next] == str[i]);
}
return m_vLen;
}
protected:
int m_c;
vector<int> m_vLen;//m_vLen[i] 表示str[0,i]的最长公共前后缀的长度
};
class CUnionFind
{
public:
CUnionFind(int iSize) :m_vNodeToRegion(iSize)
{
for (int i = 0; i < iSize; i++)
{
m_vNodeToRegion[i] = i;
}
m_iConnetRegionCount = iSize;
}
CUnionFind(vector<vector<int>>& vNeiBo) :CUnionFind(vNeiBo.size())
{
for (int i = 0; i < vNeiBo.size(); i++) {
for (const auto& n : vNeiBo[i]) {
Union(i, n);
}
}
}
int GetConnectRegionIndex(int iNode)
{
int& iConnectNO = m_vNodeToRegion[iNode];
if (iNode == iConnectNO)
{
return iNode;
}
return iConnectNO = GetConnectRegionIndex(iConnectNO);
}
void Union(int iNode1, int iNode2)
{
const int iConnectNO1 = GetConnectRegionIndex(iNode1);
const int iConnectNO2 = GetConnectRegionIndex(iNode2);
if (iConnectNO1 == iConnectNO2)
{
return;
}
m_iConnetRegionCount--;
if (iConnectNO1 > iConnectNO2)
{
UnionConnect(iConnectNO1, iConnectNO2);
}
else
{
UnionConnect(iConnectNO2, iConnectNO1);
}
}
bool IsConnect(int iNode1, int iNode2)
{
return GetConnectRegionIndex(iNode1) == GetConnectRegionIndex(iNode2);
}
int GetConnetRegionCount()const
{
return m_iConnetRegionCount;
}
vector<int> GetNodeCountOfRegion()//各联通区域的节点数量
{
const int iNodeSize = m_vNodeToRegion.size();
vector<int> vRet(iNodeSize);
for (int i = 0; i < iNodeSize; i++)
{
vRet[GetConnectRegionIndex(i)]++;
}
return vRet;
}
std::unordered_map<int, vector<int>> GetNodeOfRegion()
{
std::unordered_map<int, vector<int>> ret;
const int iNodeSize = m_vNodeToRegion.size();
for (int i = 0; i < iNodeSize; i++)
{
ret[GetConnectRegionIndex(i)].emplace_back(i);
}
return ret;
}
private:
void UnionConnect(int iFrom, int iTo)
{
m_vNodeToRegion[iFrom] = iTo;
}
vector<int> m_vNodeToRegion;//各点所在联通区域的索引,本联通区域任意一点的索引,为了增加可理解性,用最小索引
int m_iConnetRegionCount;
};
class CNeiBo
{
public:
static vector<vector<int>> Two(int n, const vector<pair<int, int>>& edges, bool bDirect, int iBase = 0)
{
vector<vector<int>> vNeiBo(n);
for (const auto& [i1, i2] : edges)
{
vNeiBo[i1 - iBase].emplace_back(i2 - iBase);
if (!bDirect)
{
vNeiBo[i2 - iBase].emplace_back(i1 - iBase);
}
}
return vNeiBo;
}
static vector<vector<int>> Two(int n, const vector<vector<int>>& edges, bool bDirect, int iBase = 0)
{
vector<vector<int>> vNeiBo(n);
for (const auto& v : edges)
{
vNeiBo[v[0] - iBase].emplace_back(v[1] - iBase);
if (!bDirect)
{
vNeiBo[v[1] - iBase].emplace_back(v[0] - iBase);
}
}
return vNeiBo;
}
static vector<vector<std::pair<int, int>>> Three(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0)
{
vector<vector<std::pair<int, int>>> vNeiBo(n);
for (const auto& v : edges)
{
vNeiBo[v[0] - iBase].emplace_back(v[1] - iBase, v[2]);
if (!bDirect)
{
vNeiBo[v[1] - iBase].emplace_back(v[0] - iBase, v[2]);
}
}
return vNeiBo;
}
static vector<vector<int>> Mat(vector<vector<int>>& neiBoMat)
{
vector<vector<int>> neiBo(neiBoMat.size());
for (int i = 0; i < neiBoMat.size(); i++)
{
for (int j = i + 1; j < neiBoMat.size(); j++)
{
if (neiBoMat[i][j])
{
neiBo[i].emplace_back(j);
neiBo[j].emplace_back(i);
}
}
}
return neiBo;
}
};
class CDGTopSort
{
public:
template <class T = vector<int> >
CDGTopSort(const vector<T>& vNeiBo) :m_vDeg(vNeiBo.size()) {
const int N = vNeiBo.size();
m_backNeiBo.resize(N);
for (int cur = 0; cur < N; cur++)
{
m_vDeg[cur] = vNeiBo[cur].size();
for (const auto& next : vNeiBo[cur])
{
m_backNeiBo[next].emplace_back(cur);
}
}
}
void Init() {
auto Add = [&](int i) {
if (0 != m_vDeg[i]) { return; }
m_que.emplace(i);
};
for (int i = 0; i < m_vDeg.size(); i++)
{
Add(i);
}
while (m_que.size())
{
const int cur = m_que.front(); m_que.pop();
if (!OnDo(cur)) { continue; }
for (const auto& next : m_backNeiBo[cur])
{
m_vDeg[next]--;
Add(next);
}
};
}
queue<int> m_que;
vector<int> m_vDeg;
protected:
vector<vector<int>> m_backNeiBo;
virtual bool OnDo(int cur) { return true; };
};
template<class T = int>
class CDiscretize //离散化
{
public:
CDiscretize(vector<T> nums)
{
sort(nums.begin(), nums.end());
nums.erase(std::unique(nums.begin(), nums.end()), nums.end());
m_nums = nums;
for (int i = 0; i < nums.size(); i++)
{
m_mValueToIndex[nums[i]] = i;
}
}
int operator[](const T value)const
{
auto it = m_mValueToIndex.find(value);
if (m_mValueToIndex.end() == it)
{
return -1;
}
return it->second;
}
int size()const
{
return m_mValueToIndex.size();
}
vector<T> m_nums;
protected:
unordered_map<T, int> m_mValueToIndex;
};
class CMyTopSort : public CDGTopSort
{
public:
CMyTopSort(const vector<vector<int>>& vNeiBo) : CDGTopSort(vNeiBo), m_vNeiBo(vNeiBo) {
m_leve.resize(vNeiBo.size());
}
vector<int> m_leve;
protected:
virtual bool OnDo(int cur) {
for (const auto& child : m_vNeiBo[cur]) {
m_leve[cur] = max(m_leve[cur], m_leve[child] + 1);
}
return true;
};
const vector<vector<int>>& m_vNeiBo;
};
class Solution {
public:
vector<pair<int, long long>> Ans(const int N, vector<tuple<int, int, int>>& edge) {
vector<vector<int>> vNeiBo(N);
vector<vector<pair<int, int>>> vNeiBo2(N);
for (auto [u, v, w] : edge) {
u--, v--;
vNeiBo[u].emplace_back(v);
vNeiBo2[u].emplace_back(v, w);
}
CMyTopSort topSort(vNeiBo);
topSort.Init();
int iMaxLeve = *max_element(topSort.m_leve.begin(), topSort.m_leve.end());
vector<vector<int>> leveNodes(iMaxLeve + 1);
for (int i = 0; i < topSort.m_leve.size(); i++) {
leveNodes[topSort.m_leve[i]].emplace_back(i);
}
vector<tuple<int, long long, long long>> ans(N);
for (const auto& v : leveNodes) {
for (const auto& cur : v) {
for (const auto& [child, w] : vNeiBo2[cur]) {
tuple<int, long long, long long> cdata(1 + get<0>(ans[child]), -((long long)1e8 * w + get<1>(ans[child])), w + get<2>(ans[child]));
if (cdata > ans[cur]) { ans[cur] = cdata; }
}
get<1>(ans[cur]) *= -1;
}
{
vector<long long> tmp(v.size());
for (int i = 0; i < v.size(); i++) {
tmp[i] = get<1>(ans[v[i]]);
}
CDiscretize dis(tmp);
for (int i = 0; i < v.size(); i++) {
get<1>(ans[v[i]]) = dis[get<1>(ans[v[i]])];
}
}
}
vector<pair<int, long long>> ans2;
for (const auto& [i1, i2, i3] : ans) {
ans2.emplace_back(i1, i3);
}
return ans2;
}
};
int main() {
#ifdef _DEBUG
freopen("a.in", "r", stdin);
#endif // DEBUG
ios::sync_with_stdio(0);
int n;
cin >> n ;
auto edge = Read<tuple<int, int,int>>();
#ifdef _DEBUG
printf("N=%d", n);
Out(edge, ",edge=");
//Out(que, ",que=");
/*Out(que, "que=");*/
#endif // DEBUG
auto res = Solution().Ans(n, edge);
for (const auto& i : res)
{
cout << i.first << " " << i.second<< "\n";
}
return 0;
}
单元测试
#include <iostream>
#include <sstream>
#include <vector>
#include<map>
#include<unordered_map>
#include<set>
#include<unordered_set>
#include<string>
#include<algorithm>
#include<functional>
#include<queue>
#include <stack>
#include<iomanip>
#include<numeric>
#include <math.h>
#include <climits>
#include<assert.h>
#include<cstring>
#include<list>
#include <bitset>
using namespace std;
template<class T1, class T2>
std::istream& operator >> (std::istream& in, pair<T1, T2>& pr) {
in >> pr.first >> pr.second;
return in;
}
template<class T1, class T2, class T3 >
std::istream& operator >> (std::istream& in, tuple<T1, T2, T3>& t) {
in >> get<0>(t) >> get<1>(t) >> get<2>(t);
return in;
}
template<class T1, class T2, class T3, class T4 >
std::istream& operator >> (std::istream& in, tuple<T1, T2, T3, T4>& t) {
in >> get<0>(t) >> get<1>(t) >> get<2>(t) >> get<3>(t);
return in;
}
template<class T = int>
vector<T> Read() {
int n;
cin >> n;
vector<T> ret(n);
for (int i = 0; i < n; i++) {
cin >> ret[i];
}
return ret;
}
template<class T = int>
vector<T> ReadNotNum() {
vector<T> ret;
T tmp;
while (cin >> tmp) {
ret.emplace_back(tmp);
if ('\n' == cin.get()) { break; }
}
return ret;
}
template<class T = int>
vector<T> Read(int n) {
vector<T> ret(n);
for (int i = 0; i < n; i++) {
cin >> ret[i];
}
return ret;
}
template<int N = 1'000'000>
class COutBuff
{
public:
COutBuff() {
m_p = puffer;
}
template<class T>
void write(T x) {
int num[28], sp = 0;
if (x < 0)
*m_p++ = '-', x = -x;
if (!x)
*m_p++ = 48;
while (x)
num[++sp] = x % 10, x /= 10;
while (sp)
*m_p++ = num[sp--] + 48;
AuotToFile();
}
void writestr(const char* sz) {
strcpy(m_p, sz);
m_p += strlen(sz);
AuotToFile();
}
inline void write(char ch)
{
*m_p++ = ch;
AuotToFile();
}
inline void ToFile() {
fwrite(puffer, 1, m_p - puffer, stdout);
m_p = puffer;
}
~COutBuff() {
ToFile();
}
private:
inline void AuotToFile() {
if (m_p - puffer > N - 100) {
ToFile();
}
}
char puffer[N], * m_p;
};
template<int N = 1'000'000>
class CInBuff
{
public:
inline CInBuff() {}
inline CInBuff<N>& operator>>(char& ch) {
FileToBuf();
ch = *S++;
return *this;
}
inline CInBuff<N>& operator>>(int& val) {
FileToBuf();
int x(0), f(0);
while (!isdigit(*S))
f |= (*S++ == '-');
while (isdigit(*S))
x = (x << 1) + (x << 3) + (*S++ ^ 48);
val = f ? -x : x; S++;//忽略空格换行
return *this;
}
inline CInBuff& operator>>(long long& val) {
FileToBuf();
long long x(0); int f(0);
while (!isdigit(*S))
f |= (*S++ == '-');
while (isdigit(*S))
x = (x << 1) + (x << 3) + (*S++ ^ 48);
val = f ? -x : x; S++;//忽略空格换行
return *this;
}
template<class T1, class T2>
inline CInBuff& operator>>(pair<T1, T2>& val) {
*this >> val.first >> val.second;
return *this;
}
template<class T1, class T2, class T3>
inline CInBuff& operator>>(tuple<T1, T2, T3>& val) {
*this >> get<0>(val) >> get<1>(val) >> get<2>(val);
return *this;
}
template<class T1, class T2, class T3, class T4>
inline CInBuff& operator>>(tuple<T1, T2, T3, T4>& val) {
*this >> get<0>(val) >> get<1>(val) >> get<2>(val) >> get<3>(val);
return *this;
}
template<class T = int>
inline CInBuff& operator>>(vector<T>& val) {
int n;
*this >> n;
val.resize(n);
for (int i = 0; i < n; i++) {
*this >> val[i];
}
return *this;
}
template<class T = int>
vector<T> Read(int n) {
vector<T> ret(n);
for (int i = 0; i < n; i++) {
*this >> ret[i];
}
return ret;
}
template<class T = int>
vector<T> Read() {
vector<T> ret;
*this >> ret;
return ret;
}
private:
inline void FileToBuf() {
const int canRead = m_iWritePos - (S - buffer);
if (canRead >= 100) { return; }
if (m_bFinish) { return; }
for (int i = 0; i < canRead; i++)
{
buffer[i] = S[i];//memcpy出错
}
m_iWritePos = canRead;
buffer[m_iWritePos] = 0;
S = buffer;
int readCnt = fread(buffer + m_iWritePos, 1, N - m_iWritePos, stdin);
if (readCnt <= 0) { m_bFinish = true; return; }
m_iWritePos += readCnt;
buffer[m_iWritePos] = 0;
S = buffer;
}
int m_iWritePos = 0; bool m_bFinish = false;
char buffer[N + 10], * S = buffer;
};
class KMP
{
public:
virtual int Find(const string& s, const string& t)
{
CalLen(t);
for (int i1 = 0, j = 0; i1 < s.length(); )
{
for (; (j < t.length()) && (i1 + j < s.length()) && (s[i1 + j] == t[j]); j++);
//i2 = i1 + j 此时s[i1,i2)和t[0,j)相等 s[i2]和t[j]不存在或相等
//t[0,j)的结尾索引是j-1,所以最长公共前缀为m_vLen[j-1],简写为y 则t[0,y)等于t[j-y,j)等于s[i2-y,i2)
if (0 == j)
{
i1++;
continue;
}
const int i2 = i1 + j;
j = m_vLen[j - 1];
i1 = i2 - j;//i2不变
}
return -1;
}
//vector<int> m_vSameLen;//m_vSame[i]记录 s[i...]和t[0...]最长公共前缀,增加可调试性 部分m_vSameLen[i]会缺失
//static vector<int> Next(const string& s)
//{// j = vNext[i] 表示s[0,i]的最大公共前后缀是s[0,j]
// const int len = s.length();
// vector<int> vNext(len, -1);
// for (int i = 1; i < len; i++)
// {
// int next = vNext[i - 1];
// while ((-1 != next) && (s[next + 1] != s[i]))
// {
// next = vNext[next];
// }
// vNext[i] = next + (s[next + 1] == s[i]);
// }
// return vNext;
//}
const vector<int> CalLen(const string& str)
{
m_vLen.resize(str.length());
for (int i = 1; i < str.length(); i++)
{
int next = m_vLen[i - 1];
while (str[next] != str[i])
{
if (0 == next)
{
break;
}
next = m_vLen[next - 1];
}
m_vLen[i] = next + (str[next] == str[i]);
}
return m_vLen;
}
protected:
int m_c;
vector<int> m_vLen;//m_vLen[i] 表示str[0,i]的最长公共前后缀的长度
};
class CUnionFind
{
public:
CUnionFind(int iSize) :m_vNodeToRegion(iSize)
{
for (int i = 0; i < iSize; i++)
{
m_vNodeToRegion[i] = i;
}
m_iConnetRegionCount = iSize;
}
CUnionFind(vector<vector<int>>& vNeiBo) :CUnionFind(vNeiBo.size())
{
for (int i = 0; i < vNeiBo.size(); i++) {
for (const auto& n : vNeiBo[i]) {
Union(i, n);
}
}
}
int GetConnectRegionIndex(int iNode)
{
int& iConnectNO = m_vNodeToRegion[iNode];
if (iNode == iConnectNO)
{
return iNode;
}
return iConnectNO = GetConnectRegionIndex(iConnectNO);
}
void Union(int iNode1, int iNode2)
{
const int iConnectNO1 = GetConnectRegionIndex(iNode1);
const int iConnectNO2 = GetConnectRegionIndex(iNode2);
if (iConnectNO1 == iConnectNO2)
{
return;
}
m_iConnetRegionCount--;
if (iConnectNO1 > iConnectNO2)
{
UnionConnect(iConnectNO1, iConnectNO2);
}
else
{
UnionConnect(iConnectNO2, iConnectNO1);
}
}
bool IsConnect(int iNode1, int iNode2)
{
return GetConnectRegionIndex(iNode1) == GetConnectRegionIndex(iNode2);
}
int GetConnetRegionCount()const
{
return m_iConnetRegionCount;
}
vector<int> GetNodeCountOfRegion()//各联通区域的节点数量
{
const int iNodeSize = m_vNodeToRegion.size();
vector<int> vRet(iNodeSize);
for (int i = 0; i < iNodeSize; i++)
{
vRet[GetConnectRegionIndex(i)]++;
}
return vRet;
}
std::unordered_map<int, vector<int>> GetNodeOfRegion()
{
std::unordered_map<int, vector<int>> ret;
const int iNodeSize = m_vNodeToRegion.size();
for (int i = 0; i < iNodeSize; i++)
{
ret[GetConnectRegionIndex(i)].emplace_back(i);
}
return ret;
}
private:
void UnionConnect(int iFrom, int iTo)
{
m_vNodeToRegion[iFrom] = iTo;
}
vector<int> m_vNodeToRegion;//各点所在联通区域的索引,本联通区域任意一点的索引,为了增加可理解性,用最小索引
int m_iConnetRegionCount;
};
class CNeiBo
{
public:
static vector<vector<int>> Two(int n, const vector<pair<int, int>>& edges, bool bDirect, int iBase = 0)
{
vector<vector<int>> vNeiBo(n);
for (const auto& [i1, i2] : edges)
{
vNeiBo[i1 - iBase].emplace_back(i2 - iBase);
if (!bDirect)
{
vNeiBo[i2 - iBase].emplace_back(i1 - iBase);
}
}
return vNeiBo;
}
static vector<vector<int>> Two(int n, const vector<vector<int>>& edges, bool bDirect, int iBase = 0)
{
vector<vector<int>> vNeiBo(n);
for (const auto& v : edges)
{
vNeiBo[v[0] - iBase].emplace_back(v[1] - iBase);
if (!bDirect)
{
vNeiBo[v[1] - iBase].emplace_back(v[0] - iBase);
}
}
return vNeiBo;
}
static vector<vector<std::pair<int, int>>> Three(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0)
{
vector<vector<std::pair<int, int>>> vNeiBo(n);
for (const auto& v : edges)
{
vNeiBo[v[0] - iBase].emplace_back(v[1] - iBase, v[2]);
if (!bDirect)
{
vNeiBo[v[1] - iBase].emplace_back(v[0] - iBase, v[2]);
}
}
return vNeiBo;
}
static vector<vector<int>> Mat(vector<vector<int>>& neiBoMat)
{
vector<vector<int>> neiBo(neiBoMat.size());
for (int i = 0; i < neiBoMat.size(); i++)
{
for (int j = i + 1; j < neiBoMat.size(); j++)
{
if (neiBoMat[i][j])
{
neiBo[i].emplace_back(j);
neiBo[j].emplace_back(i);
}
}
}
return neiBo;
}
};
class CDGTopSort
{
public:
template <class T = vector<int> >
CDGTopSort(const vector<T>& vNeiBo) :m_vDeg(vNeiBo.size()) {
const int N = vNeiBo.size();
m_backNeiBo.resize(N);
for (int cur = 0; cur < N; cur++)
{
m_vDeg[cur] = vNeiBo[cur].size();
for (const auto& next : vNeiBo[cur])
{
m_backNeiBo[next].emplace_back(cur);
}
}
}
void Init() {
auto Add = [&](int i) {
if (0 != m_vDeg[i]) { return; }
m_que.emplace(i);
};
for (int i = 0; i < m_vDeg.size(); i++)
{
Add(i);
}
while (m_que.size())
{
const int cur = m_que.front(); m_que.pop();
if (!OnDo(cur)) { continue; }
for (const auto& next : m_backNeiBo[cur])
{
m_vDeg[next]--;
Add(next);
}
};
}
queue<int> m_que;
vector<int> m_vDeg;
protected:
vector<vector<int>> m_backNeiBo;
virtual bool OnDo(int cur) { return true; };
};
template<class T = int>
class CDiscretize //离散化
{
public:
CDiscretize(vector<T> nums)
{
sort(nums.begin(), nums.end());
nums.erase(std::unique(nums.begin(), nums.end()), nums.end());
m_nums = nums;
for (int i = 0; i < nums.size(); i++)
{
m_mValueToIndex[nums[i]] = i;
}
}
int operator[](const T value)const
{
auto it = m_mValueToIndex.find(value);
if (m_mValueToIndex.end() == it)
{
return -1;
}
return it->second;
}
int size()const
{
return m_mValueToIndex.size();
}
vector<T> m_nums;
protected:
unordered_map<T, int> m_mValueToIndex;
};
class CMyTopSort : public CDGTopSort
{
public:
CMyTopSort(const vector<vector<int>>& vNeiBo) : CDGTopSort(vNeiBo), m_vNeiBo(vNeiBo) {
m_leve.resize(vNeiBo.size());
}
vector<int> m_leve;
protected:
virtual bool OnDo(int cur) {
for (const auto& child : m_vNeiBo[cur]) {
m_leve[cur] = max(m_leve[cur], m_leve[child] + 1);
}
return true;
};
const vector<vector<int>>& m_vNeiBo;
};
class Solution {
public:
vector<pair<int, long long>> Ans(const int N, vector<tuple<int, int, int>>& edge) {
vector<vector<int>> vNeiBo(N);
vector<vector<pair<int, int>>> vNeiBo2(N);
for (auto [u, v, w] : edge) {
u--, v--;
vNeiBo[u].emplace_back(v);
vNeiBo2[u].emplace_back(v, w);
}
CMyTopSort topSort(vNeiBo);
topSort.Init();
int iMaxLeve = *max_element(topSort.m_leve.begin(), topSort.m_leve.end());
vector<vector<int>> leveNodes(iMaxLeve + 1);
for (int i = 0; i < topSort.m_leve.size(); i++) {
leveNodes[topSort.m_leve[i]].emplace_back(i);
}
vector<tuple<int, long long, long long>> ans(N);
for (const auto& v : leveNodes) {
for (const auto& cur : v) {
for (const auto& [child, w] : vNeiBo2[cur]) {
tuple<int, long long, long long> cdata(1 + get<0>(ans[child]), -((long long)1e8 * w + get<1>(ans[child])), w + get<2>(ans[child]));
if (cdata > ans[cur]) { ans[cur] = cdata; }
}
get<1>(ans[cur]) *= -1;
}
{
vector<long long> tmp(v.size());
for (int i = 0; i < v.size(); i++) {
tmp[i] = get<1>(ans[v[i]]);
}
CDiscretize dis(tmp);
for (int i = 0; i < v.size(); i++) {
get<1>(ans[v[i]]) = dis[get<1>(ans[v[i]])];
}
}
}
vector<pair<int, long long>> ans2;
for (const auto& [i1, i2, i3] : ans) {
ans2.emplace_back(i1, i3);
}
return ans2;
}
};
int main() {
#ifdef _DEBUG
freopen("a.in", "r", stdin);
#endif // DEBUG
ios::sync_with_stdio(0);
int n;
cin >> n ;
auto edge = Read<tuple<int, int,int>>();
#ifdef _DEBUG
printf("N=%d", n);
Out(edge, ",edge=");
//Out(que, ",que=");
/*Out(que, "que=");*/
#endif // DEBUG
auto res = Solution().Ans(n, edge);
for (const auto& i : res)
{
cout << i.first << " " << i.second<< "\n";
}
return 0;
}
扩展阅读
我想对大家说的话 |
---|
工作中遇到的问题,可以按类别查阅鄙人的算法文章,请点击《算法与数据汇总》。 |
学习算法:按章节学习《喜缺全书算法册》,大量的题目和测试用例,打包下载。重视操作 |
有效学习:明确的目标 及时的反馈 拉伸区(难度合适) 专注 |
闻缺陷则喜(喜缺)是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。 |
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。 |
如果程序是一条龙,那算法就是他的是睛 |
失败+反思=成功 成功+反思=成功 |
视频课程
先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176
测试环境
操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。