Python 训练 day40

发布于:2025-06-03 ⋅ 阅读:(27) ⋅ 点赞:(0)

知识点回顾:

  1. 彩色和灰度图片测试和训练的规范写法:封装在函数中
  2. 展平操作:除第一个维度batchsize外全部展平
  3. dropout操作:训练阶段随机丢弃神经元,测试阶段eval模式关闭dropout

作业:仔细学习下测试和训练代码的逻辑,这是基础,这个代码框架后续会一直沿用,后续的重点慢慢就是转向模型定义阶段了。

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np
 
# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题
 
# 1. 数据预处理
transform = transforms.Compose([
     transforms.ToTensor(),  # 转换为张量并归一化到[0,1]
     transforms.Normalize((0.1307,), (0.3081,))  # MNIST数据集的均值和标准差
 ])
 
# 2. 加载MNIST数据集
train_dataset = datasets.MNIST(
     root='./data',
     train=True,
     download=True,
     transform=transform
 )
 
 test_dataset = datasets.MNIST(
     root='./data',
     train=False,
     transform=transform
 )
 
# 3. 创建数据加载器
 batch_size = 64  # 每批处理64个样本
 train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
 test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
 
# 4. 定义模型、损失函数和优化器
 class MLP(nn.Module):
     def __init__(self):
         super(MLP, self).__init__()
         self.flatten = nn.Flatten()  # 将28x28的图像展平为784维向量
         self.layer1 = nn.Linear(784, 128)  # 第一层:784个输入,128个神经元
         self.relu = nn.ReLU()  # 激活函数
         self.layer2 = nn.Linear(128, 10)  # 第二层:128个输入,10个输出(对应10个数字类别)
        
     def forward(self, x):
         x = self.flatten(x)  # 展平图像
         x = self.layer1(x)   # 第一层线性变换
         x = self.relu(x)     # 应用ReLU激活函数
         x = self.layer2(x)   # 第二层线性变换,输出logits
         return x
 
# 检查GPU是否可用
 device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 
# 初始化模型
 model = MLP()
 model = model.to(device)  # 将模型移至GPU(如果可用)
 criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数,适用于多分类问题
 optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器
 
# 5. 训练模型(记录每个 iteration 的损失)
 def train(model, train_loader, test_loader, criterion, optimizer, device, epochs):
     model.train()  # 设置为训练模式
    
     # 新增:记录每个 iteration 的损失
     all_iter_losses = []  # 存储所有 batch 的损失
     iter_indices = []     # 存储 iteration 序号(从1开始)
    
     for epoch in range(epochs):
         running_loss = 0.0
         correct = 0
         total = 0
        
         for batch_idx, (data, target) in enumerate(train_loader):
             data, target = data.to(device), target.to(device)  # 移至GPU(如果可用)
            
             optimizer.zero_grad()  # 梯度清零
             output = model(data)  # 前向传播
             loss = criterion(output, target)  # 计算损失
             loss.backward()  # 反向传播
             optimizer.step()  # 更新参数
            
             # 记录当前 iteration 的损失(注意:这里直接使用单 batch 损失,而非累加平均)
             iter_loss = loss.item()
             all_iter_losses.append(iter_loss)
             iter_indices.append(epoch * len(train_loader) + batch_idx + 1)  # iteration 序号从1开始
            
             # 统计准确率和损失(原逻辑保留,用于 epoch 级统计)
             running_loss += iter_loss
             _, predicted = output.max(1)
             total += target.size(0)
             correct += predicted.eq(target).sum().item()
            
             # 每100个批次打印一次训练信息(可选:同时打印单 batch 损失)
             if (batch_idx + 1) % 100 == 0:
                 print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} '
                       f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')
        
         # 原 epoch 级逻辑(测试、打印 epoch 结果)不变
         epoch_train_loss = running_loss / len(train_loader)
         epoch_train_acc = 100. * correct / total
         epoch_test_loss, epoch_test_acc = test(model, test_loader, criterion, device)
        
         print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')
    
     # 绘制所有 iteration 的损失曲线
     plot_iter_losses(all_iter_losses, iter_indices)
     # 保留原 epoch 级曲线(可选)
     # plot_metrics(train_losses, test_losses, train_accuracies, test_accuracies, epochs)
    
     return epoch_test_acc  # 返回最终测试准确率
 
# 6. 测试模型
 def test(model, test_loader, criterion, device):
     model.eval()  # 设置为评估模式
     test_loss = 0
     correct = 0
     total = 0
    
     with torch.no_grad():  # 不计算梯度,节省内存和计算资源
         for data, target in test_loader:
             data, target = data.to(device), target.to(device)
             output = model(data)
             test_loss += criterion(output, target).item()
            
             _, predicted = output.max(1)
             total += target.size(0)
             correct += predicted.eq(target).sum().item()
    
     avg_loss = test_loss / len(test_loader)
     accuracy = 100. * correct / total
     return avg_loss, accuracy  # 返回损失和准确率
 
# 7.绘制每个 iteration 的损失曲线
 def plot_iter_losses(losses, indices):
     plt.figure(figsize=(10, 4))
     plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')
     plt.xlabel('Iteration(Batch序号)')
     plt.ylabel('损失值')
     plt.title('每个 Iteration 的训练损失')
     plt.legend()
     plt.grid(True)
     plt.tight_layout()
     plt.show()
 
# 8. 执行训练和测试(设置 epochs=2 验证效果)
 epochs = 2  
 print("开始训练模型...")
 final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, device, epochs)
 print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")


网站公告

今日签到

点亮在社区的每一天
去签到