DAY 44 预训练模型
知识点回顾:
- 预训练的概念
- 常见的分类预训练模型
- 图像预训练模型的发展史
- 预训练的策略
- 预训练代码实战:resnet18
作业:
- 尝试在cifar10对比如下其他的预训练模型,观察差异,尽可能和他人选择的不同
- 尝试通过ctrl进入resnet的内部,观察残差究竟是什么
一、预训练的概念
我们之前在训练中发现,准确率最开始随着epoch的增加而增加。随着循环的更新,参数在不断发生更新。
所以参数的初始值对训练结果有很大的影响:
1. 如果最开始的初始值比较好,后续训练轮数就会少很多
2. 很有可能陷入局部最优值,不同的初始值可能导致陷入不同的局部最优值
我们之前在训练中发现,准确率最开始随着epoch的增加而增加。随着循环的更新,参数在不断发生更新。
所以参数的初始值对训练结果有很大的影响:
1. 如果最开始的初始值比较好,后续训练轮数就会少很多
2. 很有可能陷入局部最优值,不同的初始值可能导致陷入不同的局部最优值
现在再来看下之前一直用的cifar10数据集,他是不是就很明显不适合作为预训练数据集?
1. 规模过小:仅 10 万张图像,且尺寸小(32x32),无法支撑复杂模型学习通用视觉特征;
2. 类别单一:仅 10 类(飞机、汽车等),泛化能力有限;
这里给大家介绍一个常常用来做预训练的数据集,ImageNet,ImageNet 1000 个类别,有 1.2 亿张图像,尺寸 224x224,数据集大小 1.4G。
三、常见的分类预训练模型介绍
3.1 预训练模型的训练策略
那么什么模型会被选为预训练模型呢?比如一些调参后表现很好的cnn神经网络(固定的神经元个数+固定的层数等)。
所以调用预训练模型做微调,本质就是 用这些固定的结构+之前训练好的参数 接着训练
所以需要找到预训练的模型结构并且加载模型参数
相较于之前用自己定义的模型有以下几个注意点
1. 需要调用预训练模型和加载权重
2. 需要resize 图片让其可以适配模型
3. 需要修改最后的全连接层以适应数据集
其中,训练过程中,为了不破坏最开始的特征提取器的参数,最开始往往先冻结住特征提取器的参数,然后训练全连接层,大约在5-10个epoch后解冻训练。
主要做特征提取的部分叫做backbone骨干网络;负责融合提取的特征的部分叫做Featue Pyramid Network(FPN);负责输出的预测部分的叫做Head。
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题
# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")
# 1. 数据预处理(训练集增强,测试集标准化)
train_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
transforms.RandomRotation(15),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
test_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(
root='./data',
train=True,
download=True,
transform=train_transform
)
test_dataset = datasets.CIFAR10(
root='./data',
train=False,
transform=test_transform
)
# 3. 创建数据加载器(可调整batch_size)
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# 4. 训练函数(支持学习率调度器)
def train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs):
model.train() # 设置为训练模式
train_loss_history = []
test_loss_history = []
train_acc_history = []
test_acc_history = []
all_iter_losses = []
iter_indices = []
for epoch in range(epochs):
running_loss = 0.0
correct_train = 0
total_train = 0
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
# 记录Iteration损失
iter_loss = loss.item()
all_iter_losses.append(iter_loss)
iter_indices.append(epoch * len(train_loader) + batch_idx + 1)
# 统计训练指标
running_loss += iter_loss
_, predicted = output.max(1)
total_train += target.size(0)
correct_train += predicted.eq(target).sum().item()
# 每100批次打印进度
if (batch_idx + 1) % 100 == 0:
print(f"Epoch {epoch+1}/{epochs} | Batch {batch_idx+1}/{len(train_loader)} "
f"| 单Batch损失: {iter_loss:.4f}")
# 计算 epoch 级指标
epoch_train_loss = running_loss / len(train_loader)
epoch_train_acc = 100. * correct_train / total_train
# 测试阶段
model.eval()
correct_test = 0
total_test = 0
test_loss = 0.0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += criterion(output, target).item()
_, predicted = output.max(1)
total_test += target.size(0)
correct_test += predicted.eq(target).sum().item()
epoch_test_loss = test_loss / len(test_loader)
epoch_test_acc = 100. * correct_test / total_test
# 记录历史数据
train_loss_history.append(epoch_train_loss)
test_loss_history.append(epoch_test_loss)
train_acc_history.append(epoch_train_acc)
test_acc_history.append(epoch_test_acc)
# 更新学习率调度器
if scheduler is not None:
scheduler.step(epoch_test_loss)
# 打印 epoch 结果
print(f"Epoch {epoch+1} 完成 | 训练损失: {epoch_train_loss:.4f} "
f"| 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%")
# 绘制损失和准确率曲线
plot_iter_losses(all_iter_losses, iter_indices)
plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)
return epoch_test_acc # 返回最终测试准确率
# 5. 绘制Iteration损失曲线
def plot_iter_losses(losses, indices):
plt.figure(figsize=(10, 4))
plt.plot(indices, losses, 'b-', alpha=0.7)
plt.xlabel('Iteration(Batch序号)')
plt.ylabel('损失值')
plt.title('训练过程中的Iteration损失变化')
plt.grid(True)
plt.show()
# 6. 绘制Epoch级指标曲线
def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):
epochs = range(1, len(train_acc) + 1)
plt.figure(figsize=(12, 5))
# 准确率曲线
plt.subplot(1, 2, 1)
plt.plot(epochs, train_acc, 'b-', label='训练准确率')
plt.plot(epochs, test_acc, 'r-', label='测试准确率')
plt.xlabel('Epoch')
plt.ylabel('准确率 (%)')
plt.title('准确率随Epoch变化')
plt.legend()
plt.grid(True)
# 损失曲线
plt.subplot(1, 2, 2)
plt.plot(epochs, train_loss, 'b-', label='训练损失')
plt.plot(epochs, test_loss, 'r-', label='测试损失')
plt.xlabel('Epoch')
plt.ylabel('损失值')
plt.title('损失值随Epoch变化')
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()
# 导入ResNet模型
from torchvision.models import resnet18
# 定义ResNet18模型(支持预训练权重加载)
def create_resnet18(pretrained=True, num_classes=10):
# 加载预训练模型(ImageNet权重)
model = resnet18(pretrained=pretrained)
# 修改最后一层全连接层,适配CIFAR-10的10分类任务
in_features = model.fc.in_features
model.fc = nn.Linear(in_features, num_classes)
# 将模型转移到指定设备(CPU/GPU)
model = model.to(device)
return model
# 创建ResNet18模型(加载ImageNet预训练权重,不进行微调)
model = create_resnet18(pretrained=True, num_classes=10)
model.eval() # 设置为推理模式
# 测试单张图片(示例)
from torchvision import utils
# 从测试数据集中获取一张图片
dataiter = iter(test_loader)
images, labels = next(dataiter)
images = images[:1].to(device) # 取第1张图片
# 前向传播
with torch.no_grad():
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
# 显示图片和预测结果
plt.imshow(utils.make_grid(images.cpu(), normalize=True).permute(1, 2, 0))
plt.title(f"预测类别: {predicted.item()}")
plt.axis('off')
plt.show()
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms, models
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import os
# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题
# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")
# 1. 数据预处理(训练集增强,测试集标准化)
train_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
transforms.RandomRotation(15),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
test_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(
root='./data',
train=True,
download=True,
transform=train_transform
)
test_dataset = datasets.CIFAR10(
root='./data',
train=False,
transform=test_transform
)
# 3. 创建数据加载器
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# 4. 定义ResNet18模型
def create_resnet18(pretrained=True, num_classes=10):
model = models.resnet18(pretrained=pretrained)
# 修改最后一层全连接层
in_features = model.fc.in_features
model.fc = nn.Linear(in_features, num_classes)
return model.to(device)
# 5. 冻结/解冻模型层的函数
def freeze_model(model, freeze=True):
"""冻结或解冻模型的卷积层参数"""
# 冻结/解冻除fc层外的所有参数
for name, param in model.named_parameters():
if 'fc' not in name:
param.requires_grad = not freeze
# 打印冻结状态
frozen_params = sum(p.numel() for p in model.parameters() if not p.requires_grad)
total_params = sum(p.numel() for p in model.parameters())
if freeze:
print(f"已冻结模型卷积层参数 ({frozen_params}/{total_params} 参数)")
else:
print(f"已解冻模型所有参数 ({total_params}/{total_params} 参数可训练)")
return model
# 6. 训练函数(支持阶段式训练)
def train_with_freeze_schedule(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs, freeze_epochs=5):
"""
前freeze_epochs轮冻结卷积层,之后解冻所有层进行训练
"""
train_loss_history = []
test_loss_history = []
train_acc_history = []
test_acc_history = []
all_iter_losses = []
iter_indices = []
# 初始冻结卷积层
if freeze_epochs > 0:
model = freeze_model(model, freeze=True)
for epoch in range(epochs):
# 解冻控制:在指定轮次后解冻所有层
if epoch == freeze_epochs:
model = freeze_model(model, freeze=False)
# 解冻后调整优化器(可选)
optimizer.param_groups[0]['lr'] = 1e-4 # 降低学习率防止过拟合
model.train() # 设置为训练模式
running_loss = 0.0
correct_train = 0
total_train = 0
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
# 记录Iteration损失
iter_loss = loss.item()
all_iter_losses.append(iter_loss)
iter_indices.append(epoch * len(train_loader) + batch_idx + 1)
# 统计训练指标
running_loss += iter_loss
_, predicted = output.max(1)
total_train += target.size(0)
correct_train += predicted.eq(target).sum().item()
# 每100批次打印进度
if (batch_idx + 1) % 100 == 0:
print(f"Epoch {epoch+1}/{epochs} | Batch {batch_idx+1}/{len(train_loader)} "
f"| 单Batch损失: {iter_loss:.4f}")
# 计算 epoch 级指标
epoch_train_loss = running_loss / len(train_loader)
epoch_train_acc = 100. * correct_train / total_train
# 测试阶段
model.eval()
correct_test = 0
total_test = 0
test_loss = 0.0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += criterion(output, target).item()
_, predicted = output.max(1)
total_test += target.size(0)
correct_test += predicted.eq(target).sum().item()
epoch_test_loss = test_loss / len(test_loader)
epoch_test_acc = 100. * correct_test / total_test
# 记录历史数据
train_loss_history.append(epoch_train_loss)
test_loss_history.append(epoch_test_loss)
train_acc_history.append(epoch_train_acc)
test_acc_history.append(epoch_test_acc)
# 更新学习率调度器
if scheduler is not None:
scheduler.step(epoch_test_loss)
# 打印 epoch 结果
print(f"Epoch {epoch+1} 完成 | 训练损失: {epoch_train_loss:.4f} "
f"| 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%")
# 绘制损失和准确率曲线
plot_iter_losses(all_iter_losses, iter_indices)
plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)
return epoch_test_acc # 返回最终测试准确率
# 7. 绘制Iteration损失曲线
def plot_iter_losses(losses, indices):
plt.figure(figsize=(10, 4))
plt.plot(indices, losses, 'b-', alpha=0.7)
plt.xlabel('Iteration(Batch序号)')
plt.ylabel('损失值')
plt.title('训练过程中的Iteration损失变化')
plt.grid(True)
plt.show()
# 8. 绘制Epoch级指标曲线
def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):
epochs = range(1, len(train_acc) + 1)
plt.figure(figsize=(12, 5))
# 准确率曲线
plt.subplot(1, 2, 1)
plt.plot(epochs, train_acc, 'b-', label='训练准确率')
plt.plot(epochs, test_acc, 'r-', label='测试准确率')
plt.xlabel('Epoch')
plt.ylabel('准确率 (%)')
plt.title('准确率随Epoch变化')
plt.legend()
plt.grid(True)
# 损失曲线
plt.subplot(1, 2, 2)
plt.plot(epochs, train_loss, 'b-', label='训练损失')
plt.plot(epochs, test_loss, 'r-', label='测试损失')
plt.xlabel('Epoch')
plt.ylabel('损失值')
plt.title('损失值随Epoch变化')
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()
# 主函数:训练模型
def main():
# 参数设置
epochs = 40 # 总训练轮次
freeze_epochs = 5 # 冻结卷积层的轮次
learning_rate = 1e-3 # 初始学习率
weight_decay = 1e-4 # 权重衰减
# 创建ResNet18模型(加载预训练权重)
model = create_resnet18(pretrained=True, num_classes=10)
# 定义优化器和损失函数
optimizer = optim.Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
criterion = nn.CrossEntropyLoss()
# 定义学习率调度器
scheduler = optim.lr_scheduler.ReduceLROnPlateau(
optimizer, mode='min', factor=0.5, patience=2, verbose=True
)
# 开始训练(前5轮冻结卷积层,之后解冻)
final_accuracy = train_with_freeze_schedule(
model=model,
train_loader=train_loader,
test_loader=test_loader,
criterion=criterion,
optimizer=optimizer,
scheduler=scheduler,
device=device,
epochs=epochs,
freeze_epochs=freeze_epochs
)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")
# # 保存模型
# torch.save(model.state_dict(), 'resnet18_cifar10_finetuned.pth')
# print("模型已保存至: resnet18_cifar10_finetuned.pth")
if __name__ == "__main__":
main()
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torchvision.models import resnet18, densenet121
from torchsummary import summary # 查看模型结构
import matplotlib.pyplot as plt
# 设备配置
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# CIFAR10 数据预处理
transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
train_set = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
test_set = datasets.CIFAR10(root='./data', train=False, download=True, transform=transforms.ToTensor())
train_loader = torch.utils.data.DataLoader(train_set, batch_size=128, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=128, shuffle=False)
class DenseNetC10(nn.Module):
def __init__(self, num_classes=10):
super(DenseNetC10, self).__init__()
# 压缩原版 DenseNet121,减少层数和通道数
self.features = nn.Sequential(
nn.Conv2d(3, 32, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
# 3个密集块,每个块含3层
self._make_dense_block(32, 32, num_layers=3),
self._make_dense_block(64, 32, num_layers=3),
self._make_dense_block(96, 32, num_layers=3),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.AdaptiveAvgPool2d((1, 1))
)
self.classifier = nn.Linear(128, num_classes)
def _make_dense_block(self, in_channels, growth_rate, num_layers):
layers = []
for _ in range(num_layers):
layers.append(nn.Conv2d(in_channels, growth_rate, kernel_size=3, padding=1, bias=False))
layers.append(nn.BatchNorm2d(growth_rate))
layers.append(nn.ReLU(inplace=True))
in_channels += growth_rate
return nn.Sequential(*layers)
def forward(self, x):
features = self.features(x)
out = features.view(features.size(0), -1)
out = self.classifier(out)
return out
# 初始化模型
models = {
'DenseNet-C10': DenseNetC10().to(device),
'MobileViT': MobileViT().to(device),
'RepVGG': RepVGG().to(device),
'ResNet18': resnet18(pretrained=False, num_classes=10).to(device) # 对比基准
}
# 训练超参数
criterion = nn.CrossEntropyLoss()
accuracies = {}
for model_name, model in models.items():
print(f'\nTraining {model_name}...')
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=200)
best_acc = 0.0
for epoch in range(1, 201):
train_model(model, criterion, optimizer, epoch)
acc = test_model(model, criterion)
if acc > best_acc:
best_acc = acc
accuracies[model_name] = best_acc
# 打印对比结果
print('\nFinal Accuracy Comparison:')
for name, acc in accuracies.items():
print(f'{name}: {acc:.2f}%')
def visualize_residual(model, data):
# 注册钩子函数捕捉残差块输出
residuals = []
def hook(module, input, output):
residual = output - input[0] # 残差 = 输出 - 输入
residuals.append(residual.detach().cpu())
# 选择ResNet18的第一个残差块(layer1[0])
model.layer1[0].register_forward_hook(hook)
with torch.no_grad():
model(data.to(device))
# 可视化残差图(取第一个样本的第一个通道)
residual = residuals[0][0, 0, :, :] # 形状(32,32)
plt.figure(figsize=(6, 4))
plt.subplot(1, 2, 1)
plt.imshow(data[0].permute(1, 2, 0)) # 原始图像
plt.title('Input Image')
plt.subplot(1, 2, 2)
plt.imshow(residual, cmap='coolwarm') # 残差热力图
plt.title('Residual Map')
plt.colorbar()
plt.show()
# 测试残差可视化(用ResNet18和测试集中的一张图像)
resnet_model = resnet18(num_classes=10).to(device)
data, _ = next(iter(test_loader))
visualize_residual(resnet_model, data[:1]) # 取第一个样本