Python训练第四十四天

发布于:2025-06-05 ⋅ 阅读:(19) ⋅ 点赞:(0)

DAY 44 预训练模型

知识点回顾:

  1. 预训练的概念
  2. 常见的分类预训练模型
  3. 图像预训练模型的发展史
  4. 预训练的策略
  5. 预训练代码实战:resnet18

作业:

  1. 尝试在cifar10对比如下其他的预训练模型,观察差异,尽可能和他人选择的不同
  2. 尝试通过ctrl进入resnet的内部,观察残差究竟是什么

一、预训练的概念

我们之前在训练中发现,准确率最开始随着epoch的增加而增加。随着循环的更新,参数在不断发生更新。

所以参数的初始值对训练结果有很大的影响:

1. 如果最开始的初始值比较好,后续训练轮数就会少很多

2. 很有可能陷入局部最优值,不同的初始值可能导致陷入不同的局部最优值

我们之前在训练中发现,准确率最开始随着epoch的增加而增加。随着循环的更新,参数在不断发生更新。

所以参数的初始值对训练结果有很大的影响:

1. 如果最开始的初始值比较好,后续训练轮数就会少很多

2. 很有可能陷入局部最优值,不同的初始值可能导致陷入不同的局部最优值

现在再来看下之前一直用的cifar10数据集,他是不是就很明显不适合作为预训练数据集?

1. 规模过小:仅 10 万张图像,且尺寸小(32x32),无法支撑复杂模型学习通用视觉特征;

2. 类别单一:仅 10 类(飞机、汽车等),泛化能力有限;

这里给大家介绍一个常常用来做预训练的数据集,ImageNet,ImageNet 1000 个类别,有 1.2 亿张图像,尺寸 224x224,数据集大小 1.4G。

三、常见的分类预训练模型介绍

3.1 预训练模型的训练策略

那么什么模型会被选为预训练模型呢?比如一些调参后表现很好的cnn神经网络(固定的神经元个数+固定的层数等)。

所以调用预训练模型做微调,本质就是 用这些固定的结构+之前训练好的参数 接着训练

所以需要找到预训练的模型结构并且加载模型参数

相较于之前用自己定义的模型有以下几个注意点

1. 需要调用预训练模型和加载权重

2. 需要resize 图片让其可以适配模型

3. 需要修改最后的全连接层以适应数据集

其中,训练过程中,为了不破坏最开始的特征提取器的参数,最开始往往先冻结住特征提取器的参数,然后训练全连接层,大约在5-10个epoch后解冻训练。

主要做特征提取的部分叫做backbone骨干网络;负责融合提取的特征的部分叫做Featue Pyramid Network(FPN);负责输出的预测部分的叫做Head。

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt

# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题

# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")

# 1. 数据预处理(训练集增强,测试集标准化)
train_transform = transforms.Compose([
    transforms.RandomCrop(32, padding=4),
    transforms.RandomHorizontalFlip(),
    transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
    transforms.RandomRotation(15),
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])

test_transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])

# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(
    root='./data',
    train=True,
    download=True,
    transform=train_transform
)

test_dataset = datasets.CIFAR10(
    root='./data',
    train=False,
    transform=test_transform
)

# 3. 创建数据加载器(可调整batch_size)
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

# 4. 训练函数(支持学习率调度器)
def train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs):
    model.train()  # 设置为训练模式
    train_loss_history = []
    test_loss_history = []
    train_acc_history = []
    test_acc_history = []
    all_iter_losses = []
    iter_indices = []

    for epoch in range(epochs):
        running_loss = 0.0
        correct_train = 0
        total_train = 0
        
        for batch_idx, (data, target) in enumerate(train_loader):
            data, target = data.to(device), target.to(device)
            optimizer.zero_grad()
            output = model(data)
            loss = criterion(output, target)
            loss.backward()
            optimizer.step()
            
            # 记录Iteration损失
            iter_loss = loss.item()
            all_iter_losses.append(iter_loss)
            iter_indices.append(epoch * len(train_loader) + batch_idx + 1)
            
            # 统计训练指标
            running_loss += iter_loss
            _, predicted = output.max(1)
            total_train += target.size(0)
            correct_train += predicted.eq(target).sum().item()
            
            # 每100批次打印进度
            if (batch_idx + 1) % 100 == 0:
                print(f"Epoch {epoch+1}/{epochs} | Batch {batch_idx+1}/{len(train_loader)} "
                      f"| 单Batch损失: {iter_loss:.4f}")
        
        # 计算 epoch 级指标
        epoch_train_loss = running_loss / len(train_loader)
        epoch_train_acc = 100. * correct_train / total_train
        
        # 测试阶段
        model.eval()
        correct_test = 0
        total_test = 0
        test_loss = 0.0
        with torch.no_grad():
            for data, target in test_loader:
                data, target = data.to(device), target.to(device)
                output = model(data)
                test_loss += criterion(output, target).item()
                _, predicted = output.max(1)
                total_test += target.size(0)
                correct_test += predicted.eq(target).sum().item()
        
        epoch_test_loss = test_loss / len(test_loader)
        epoch_test_acc = 100. * correct_test / total_test
        
        # 记录历史数据
        train_loss_history.append(epoch_train_loss)
        test_loss_history.append(epoch_test_loss)
        train_acc_history.append(epoch_train_acc)
        test_acc_history.append(epoch_test_acc)
        
        # 更新学习率调度器
        if scheduler is not None:
            scheduler.step(epoch_test_loss)
        
        # 打印 epoch 结果
        print(f"Epoch {epoch+1} 完成 | 训练损失: {epoch_train_loss:.4f} "
              f"| 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%")
    
    # 绘制损失和准确率曲线
    plot_iter_losses(all_iter_losses, iter_indices)
    plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)
    
    return epoch_test_acc  # 返回最终测试准确率

# 5. 绘制Iteration损失曲线
def plot_iter_losses(losses, indices):
    plt.figure(figsize=(10, 4))
    plt.plot(indices, losses, 'b-', alpha=0.7)
    plt.xlabel('Iteration(Batch序号)')
    plt.ylabel('损失值')
    plt.title('训练过程中的Iteration损失变化')
    plt.grid(True)
    plt.show()

# 6. 绘制Epoch级指标曲线
def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):
    epochs = range(1, len(train_acc) + 1)
    
    plt.figure(figsize=(12, 5))
    
    # 准确率曲线
    plt.subplot(1, 2, 1)
    plt.plot(epochs, train_acc, 'b-', label='训练准确率')
    plt.plot(epochs, test_acc, 'r-', label='测试准确率')
    plt.xlabel('Epoch')
    plt.ylabel('准确率 (%)')
    plt.title('准确率随Epoch变化')
    plt.legend()
    plt.grid(True)
    
    # 损失曲线
    plt.subplot(1, 2, 2)
    plt.plot(epochs, train_loss, 'b-', label='训练损失')
    plt.plot(epochs, test_loss, 'r-', label='测试损失')
    plt.xlabel('Epoch')
    plt.ylabel('损失值')
    plt.title('损失值随Epoch变化')
    plt.legend()
    plt.grid(True)
    plt.tight_layout()
    plt.show()
# 导入ResNet模型
from torchvision.models import resnet18

# 定义ResNet18模型(支持预训练权重加载)
def create_resnet18(pretrained=True, num_classes=10):
    # 加载预训练模型(ImageNet权重)
    model = resnet18(pretrained=pretrained)
    
    # 修改最后一层全连接层,适配CIFAR-10的10分类任务
    in_features = model.fc.in_features
    model.fc = nn.Linear(in_features, num_classes)
    
    # 将模型转移到指定设备(CPU/GPU)
    model = model.to(device)
    return model
# 创建ResNet18模型(加载ImageNet预训练权重,不进行微调)
model = create_resnet18(pretrained=True, num_classes=10)
model.eval()  # 设置为推理模式

# 测试单张图片(示例)
from torchvision import utils

# 从测试数据集中获取一张图片
dataiter = iter(test_loader)
images, labels = next(dataiter)
images = images[:1].to(device)  # 取第1张图片

# 前向传播
with torch.no_grad():
    outputs = model(images)
    _, predicted = torch.max(outputs.data, 1)

# 显示图片和预测结果
plt.imshow(utils.make_grid(images.cpu(), normalize=True).permute(1, 2, 0))
plt.title(f"预测类别: {predicted.item()}")
plt.axis('off')
plt.show()

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms, models
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import os

# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题

# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")

# 1. 数据预处理(训练集增强,测试集标准化)
train_transform = transforms.Compose([
    transforms.RandomCrop(32, padding=4),
    transforms.RandomHorizontalFlip(),
    transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
    transforms.RandomRotation(15),
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])

test_transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])

# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(
    root='./data',
    train=True,
    download=True,
    transform=train_transform
)

test_dataset = datasets.CIFAR10(
    root='./data',
    train=False,
    transform=test_transform
)

# 3. 创建数据加载器
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

# 4. 定义ResNet18模型
def create_resnet18(pretrained=True, num_classes=10):
    model = models.resnet18(pretrained=pretrained)
    
    # 修改最后一层全连接层
    in_features = model.fc.in_features
    model.fc = nn.Linear(in_features, num_classes)
    
    return model.to(device)

# 5. 冻结/解冻模型层的函数
def freeze_model(model, freeze=True):
    """冻结或解冻模型的卷积层参数"""
    # 冻结/解冻除fc层外的所有参数
    for name, param in model.named_parameters():
        if 'fc' not in name:
            param.requires_grad = not freeze
    
    # 打印冻结状态
    frozen_params = sum(p.numel() for p in model.parameters() if not p.requires_grad)
    total_params = sum(p.numel() for p in model.parameters())
    
    if freeze:
        print(f"已冻结模型卷积层参数 ({frozen_params}/{total_params} 参数)")
    else:
        print(f"已解冻模型所有参数 ({total_params}/{total_params} 参数可训练)")
    
    return model

# 6. 训练函数(支持阶段式训练)
def train_with_freeze_schedule(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs, freeze_epochs=5):
    """
    前freeze_epochs轮冻结卷积层,之后解冻所有层进行训练
    """
    train_loss_history = []
    test_loss_history = []
    train_acc_history = []
    test_acc_history = []
    all_iter_losses = []
    iter_indices = []
    
    # 初始冻结卷积层
    if freeze_epochs > 0:
        model = freeze_model(model, freeze=True)
    
    for epoch in range(epochs):
        # 解冻控制:在指定轮次后解冻所有层
        if epoch == freeze_epochs:
            model = freeze_model(model, freeze=False)
            # 解冻后调整优化器(可选)
            optimizer.param_groups[0]['lr'] = 1e-4  # 降低学习率防止过拟合
        
        model.train()  # 设置为训练模式
        running_loss = 0.0
        correct_train = 0
        total_train = 0
        
        for batch_idx, (data, target) in enumerate(train_loader):
            data, target = data.to(device), target.to(device)
            optimizer.zero_grad()
            output = model(data)
            loss = criterion(output, target)
            loss.backward()
            optimizer.step()
            
            # 记录Iteration损失
            iter_loss = loss.item()
            all_iter_losses.append(iter_loss)
            iter_indices.append(epoch * len(train_loader) + batch_idx + 1)
            
            # 统计训练指标
            running_loss += iter_loss
            _, predicted = output.max(1)
            total_train += target.size(0)
            correct_train += predicted.eq(target).sum().item()
            
            # 每100批次打印进度
            if (batch_idx + 1) % 100 == 0:
                print(f"Epoch {epoch+1}/{epochs} | Batch {batch_idx+1}/{len(train_loader)} "
                      f"| 单Batch损失: {iter_loss:.4f}")
        
        # 计算 epoch 级指标
        epoch_train_loss = running_loss / len(train_loader)
        epoch_train_acc = 100. * correct_train / total_train
        
        # 测试阶段
        model.eval()
        correct_test = 0
        total_test = 0
        test_loss = 0.0
        with torch.no_grad():
            for data, target in test_loader:
                data, target = data.to(device), target.to(device)
                output = model(data)
                test_loss += criterion(output, target).item()
                _, predicted = output.max(1)
                total_test += target.size(0)
                correct_test += predicted.eq(target).sum().item()
        
        epoch_test_loss = test_loss / len(test_loader)
        epoch_test_acc = 100. * correct_test / total_test
        
        # 记录历史数据
        train_loss_history.append(epoch_train_loss)
        test_loss_history.append(epoch_test_loss)
        train_acc_history.append(epoch_train_acc)
        test_acc_history.append(epoch_test_acc)
        
        # 更新学习率调度器
        if scheduler is not None:
            scheduler.step(epoch_test_loss)
        
        # 打印 epoch 结果
        print(f"Epoch {epoch+1} 完成 | 训练损失: {epoch_train_loss:.4f} "
              f"| 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%")
    
    # 绘制损失和准确率曲线
    plot_iter_losses(all_iter_losses, iter_indices)
    plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)
    
    return epoch_test_acc  # 返回最终测试准确率

# 7. 绘制Iteration损失曲线
def plot_iter_losses(losses, indices):
    plt.figure(figsize=(10, 4))
    plt.plot(indices, losses, 'b-', alpha=0.7)
    plt.xlabel('Iteration(Batch序号)')
    plt.ylabel('损失值')
    plt.title('训练过程中的Iteration损失变化')
    plt.grid(True)
    plt.show()

# 8. 绘制Epoch级指标曲线
def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):
    epochs = range(1, len(train_acc) + 1)
    
    plt.figure(figsize=(12, 5))
    
    # 准确率曲线
    plt.subplot(1, 2, 1)
    plt.plot(epochs, train_acc, 'b-', label='训练准确率')
    plt.plot(epochs, test_acc, 'r-', label='测试准确率')
    plt.xlabel('Epoch')
    plt.ylabel('准确率 (%)')
    plt.title('准确率随Epoch变化')
    plt.legend()
    plt.grid(True)
    
    # 损失曲线
    plt.subplot(1, 2, 2)
    plt.plot(epochs, train_loss, 'b-', label='训练损失')
    plt.plot(epochs, test_loss, 'r-', label='测试损失')
    plt.xlabel('Epoch')
    plt.ylabel('损失值')
    plt.title('损失值随Epoch变化')
    plt.legend()
    plt.grid(True)
    plt.tight_layout()
    plt.show()

# 主函数:训练模型
def main():
    # 参数设置
    epochs = 40  # 总训练轮次
    freeze_epochs = 5  # 冻结卷积层的轮次
    learning_rate = 1e-3  # 初始学习率
    weight_decay = 1e-4  # 权重衰减
    
    # 创建ResNet18模型(加载预训练权重)
    model = create_resnet18(pretrained=True, num_classes=10)
    
    # 定义优化器和损失函数
    optimizer = optim.Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
    criterion = nn.CrossEntropyLoss()
    
    # 定义学习率调度器
    scheduler = optim.lr_scheduler.ReduceLROnPlateau(
        optimizer, mode='min', factor=0.5, patience=2, verbose=True
    )
    
    # 开始训练(前5轮冻结卷积层,之后解冻)
    final_accuracy = train_with_freeze_schedule(
        model=model,
        train_loader=train_loader,
        test_loader=test_loader,
        criterion=criterion,
        optimizer=optimizer,
        scheduler=scheduler,
        device=device,
        epochs=epochs,
        freeze_epochs=freeze_epochs
    )
    
    print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")
    
    # # 保存模型
    # torch.save(model.state_dict(), 'resnet18_cifar10_finetuned.pth')
    # print("模型已保存至: resnet18_cifar10_finetuned.pth")

if __name__ == "__main__":
    main()

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torchvision.models import resnet18, densenet121
from torchsummary import summary  # 查看模型结构
import matplotlib.pyplot as plt
 
# 设备配置
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 
# CIFAR10 数据预处理
transform = transforms.Compose([
    transforms.RandomCrop(32, padding=4),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
train_set = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
test_set = datasets.CIFAR10(root='./data', train=False, download=True, transform=transforms.ToTensor())
train_loader = torch.utils.data.DataLoader(train_set, batch_size=128, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=128, shuffle=False)
 
class DenseNetC10(nn.Module):
    def __init__(self, num_classes=10):
        super(DenseNetC10, self).__init__()
        # 压缩原版 DenseNet121,减少层数和通道数
        self.features = nn.Sequential(
            nn.Conv2d(3, 32, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(32),
            nn.ReLU(inplace=True),
            # 3个密集块,每个块含3层
            self._make_dense_block(32, 32, num_layers=3),
            self._make_dense_block(64, 32, num_layers=3),
            self._make_dense_block(96, 32, num_layers=3),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.AdaptiveAvgPool2d((1, 1))
        )
        self.classifier = nn.Linear(128, num_classes)
    
    def _make_dense_block(self, in_channels, growth_rate, num_layers):
        layers = []
        for _ in range(num_layers):
            layers.append(nn.Conv2d(in_channels, growth_rate, kernel_size=3, padding=1, bias=False))
            layers.append(nn.BatchNorm2d(growth_rate))
            layers.append(nn.ReLU(inplace=True))
            in_channels += growth_rate
        return nn.Sequential(*layers)
    
    def forward(self, x):
        features = self.features(x)
        out = features.view(features.size(0), -1)
        out = self.classifier(out)
        return out
 
# 初始化模型
models = {
    'DenseNet-C10': DenseNetC10().to(device),
    'MobileViT': MobileViT().to(device),
    'RepVGG': RepVGG().to(device),
    'ResNet18': resnet18(pretrained=False, num_classes=10).to(device)  # 对比基准
}
 
# 训练超参数
criterion = nn.CrossEntropyLoss()
accuracies = {}
 
for model_name, model in models.items():
    print(f'\nTraining {model_name}...')
    optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)
    scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=200)
    best_acc = 0.0
    for epoch in range(1, 201):
        train_model(model, criterion, optimizer, epoch)
        acc = test_model(model, criterion)
        if acc > best_acc:
            best_acc = acc
    accuracies[model_name] = best_acc
 
# 打印对比结果
print('\nFinal Accuracy Comparison:')
for name, acc in accuracies.items():
    print(f'{name}: {acc:.2f}%')
 
def visualize_residual(model, data):
    # 注册钩子函数捕捉残差块输出
    residuals = []
    def hook(module, input, output):
        residual = output - input[0]  # 残差 = 输出 - 输入
        residuals.append(residual.detach().cpu())
    
    # 选择ResNet18的第一个残差块(layer1[0])
    model.layer1[0].register_forward_hook(hook)
    with torch.no_grad():
        model(data.to(device))
    
    # 可视化残差图(取第一个样本的第一个通道)
    residual = residuals[0][0, 0, :, :]  # 形状(32,32)
    plt.figure(figsize=(6, 4))
    plt.subplot(1, 2, 1)
    plt.imshow(data[0].permute(1, 2, 0))  # 原始图像
    plt.title('Input Image')
    plt.subplot(1, 2, 2)
    plt.imshow(residual, cmap='coolwarm')  # 残差热力图
    plt.title('Residual Map')
    plt.colorbar()
    plt.show()
 
# 测试残差可视化(用ResNet18和测试集中的一张图像)
resnet_model = resnet18(num_classes=10).to(device)
data, _ = next(iter(test_loader))
visualize_residual(resnet_model, data[:1])  # 取第一个样本

@浙大疏锦行


网站公告

今日签到

点亮在社区的每一天
去签到