知识点回顾:
不同CNN层的特征图:不同通道的特征图
什么是注意力:注意力家族,类似于动物园,都是不同的模块,好不好试了才知道。
通道注意力:模型的定义和插入的位置
通道注意力后的特征图和热力图
作业:
今日代码较多,理解逻辑即可
对比不同卷积层特征图可视化的结果(可选)
之前复试班强化部分的transformer框架那节课已经介绍过注意力机制的由来,本质从onehot-elmo-selfattention-encoder-bert这就是一条不断提取特征的路。各有各的特点,也可以说由弱到强。
1.其中注意力机制是一种让模型学会「选择性关注重要信息」的特征提取器,就像人类视觉会自动忽略背景,聚焦于图片中的主体(如猫、汽车)。
transformer中的叫做自注意力机制,他是一种自己学习自己的机制,他可以自动学习到图片中的主体,并忽略背景。我们现在说的很多模块,比如通道注意力、空间注意力、通道注意力等等,都是基于自注意力机制的。
从数学角度看,注意力机制是对输入特征进行加权求和,输出=∑(输入特征×注意力权重),其中注意力权重是学习到的。所以他和卷积很像,因为卷积也是一种加权求和。但是卷积是 “固定权重” 的特征提取(如 3x3 卷积核)--训练完了就结束了,注意力是 “动态权重” 的特征提取(权重随输入数据变化)---输入数据不同权重不同。
问:为什么需要多种注意力模块?
答:因为不同场景下的关键信息分布不同。例如,识别鸟类和飞机时,需关注 “羽毛纹理”“金属光泽” 等特定通道的特征,通道注意力可强化关键通道;而物体位置不确定时(如猫出现在图像不同位置),空间注意力能聚焦物体所在区域,忽略背景。复杂场景中,可能需要同时关注通道和空间(如混合注意力模块 CBAM),或处理长距离依赖(如全局注意力模块 Non-local)。
问:为什么不设计一个‘万能’注意力模块?
答:主要受效率和灵活性限制。专用模块针对特定需求优化计算,成本更低(如通道注意力仅需处理通道维度,无需全局位置计算);不同任务的核心需求差异大(如医学图像侧重空间定位,自然语言处理侧重语义长距离依赖),通用模块可能冗余或低效。每个模块新增的权重会增加模型参数量,若训练数据不足或优化不当,可能引发过拟合。因此实际应用中需结合轻量化设计(如减少全连接层参数)、正则化(如 Dropout)或结构约束(如共享注意力权重)来平衡性能与复杂度。
通道注意力(Channel Attention)属于**注意力机制(Attention Mechanism)的变体**,而非自注意力(Self-Attention)的直接变体。可以理解为注意力是一个动物园算法,里面很多个物种,自注意力只是一个分支,因为开创了transformer所以备受瞩目。我们今天的内容用通道注意力举例
常见注意力模块的归类如下
二、 特征图的提取
2.1 简单CNN的训练
昨天我已经介绍了cnn,为了好演示,我就重新训练了之前的cnn代码,你可以直接加载之前保存好的权重试试,一般重新训练1-2轮就会恢复效果。
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np
# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题
# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")
# 1. 数据预处理
# 训练集:使用多种数据增强方法提高模型泛化能力
train_transform = transforms.Compose([
# 随机裁剪图像,从原图中随机截取32x32大小的区域
transforms.RandomCrop(32, padding=4),
# 随机水平翻转图像(概率0.5)
transforms.RandomHorizontalFlip(),
# 随机颜色抖动:亮度、对比度、饱和度和色调随机变化
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
# 随机旋转图像(最大角度15度)
transforms.RandomRotation(15),
# 将PIL图像或numpy数组转换为张量
transforms.ToTensor(),
# 标准化处理:每个通道的均值和标准差,使数据分布更合理
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
# 测试集:仅进行必要的标准化,保持数据原始特性,标准化不损失数据信息,可还原
test_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(
root='./data',
train=True,
download=True,
transform=train_transform # 使用增强后的预处理
)
test_dataset = datasets.CIFAR10(
root='./data',
train=False,
transform=test_transform # 测试集不使用增强
)
# 3. 创建数据加载器
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# 4. 定义CNN模型的定义(替代原MLP)
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__() # 继承父类初始化
# ---------------------- 第一个卷积块 ----------------------
# 卷积层1:输入3通道(RGB),输出32个特征图,卷积核3x3,边缘填充1像素
self.conv1 = nn.Conv2d(
in_channels=3, # 输入通道数(图像的RGB通道)
out_channels=32, # 输出通道数(生成32个新特征图)
kernel_size=3, # 卷积核尺寸(3x3像素)
padding=1 # 边缘填充1像素,保持输出尺寸与输入相同
)
# 批量归一化层:对32个输出通道进行归一化,加速训练
self.bn1 = nn.BatchNorm2d(num_features=32)
# ReLU激活函数:引入非线性,公式:max(0, x)
self.relu1 = nn.ReLU()
# 最大池化层:窗口2x2,步长2,特征图尺寸减半(32x32→16x16)
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) # stride默认等于kernel_size
# ---------------------- 第二个卷积块 ----------------------
# 卷积层2:输入32通道(来自conv1的输出),输出64通道
self.conv2 = nn.Conv2d(
in_channels=32, # 输入通道数(前一层的输出通道数)
out_channels=64, # 输出通道数(特征图数量翻倍)
kernel_size=3, # 卷积核尺寸不变
padding=1 # 保持尺寸:16x16→16x16(卷积后)→8x8(池化后)
)
self.bn2 = nn.BatchNorm2d(num_features=64)
self.relu2 = nn.ReLU()
self.pool2 = nn.MaxPool2d(kernel_size=2) # 尺寸减半:16x16→8x8
# ---------------------- 第三个卷积块 ----------------------
# 卷积层3:输入64通道,输出128通道
self.conv3 = nn.Conv2d(
in_channels=64, # 输入通道数(前一层的输出通道数)
out_channels=128, # 输出通道数(特征图数量再次翻倍)
kernel_size=3,
padding=1 # 保持尺寸:8x8→8x8(卷积后)→4x4(池化后)
)
self.bn3 = nn.BatchNorm2d(num_features=128)
self.relu3 = nn.ReLU() # 复用激活函数对象(节省内存)
self.pool3 = nn.MaxPool2d(kernel_size=2) # 尺寸减半:8x8→4x4
# ---------------------- 全连接层(分类器) ----------------------
# 计算展平后的特征维度:128通道 × 4x4尺寸 = 128×16=2048维
self.fc1 = nn.Linear(
in_features=128 * 4 * 4, # 输入维度(卷积层输出的特征数)
out_features=512 # 输出维度(隐藏层神经元数)
)
# Dropout层:训练时随机丢弃50%神经元,防止过拟合
self.dropout = nn.Dropout(p=0.5)
# 输出层:将512维特征映射到10个类别(CIFAR-10的类别数)
self.fc2 = nn.Linear(in_features=512, out_features=10)
def forward(self, x):
# 输入尺寸:[batch_size, 3, 32, 32](batch_size=批量大小,3=通道数,32x32=图像尺寸)
# ---------- 卷积块1处理 ----------
x = self.conv1(x) # 卷积后尺寸:[batch_size, 32, 32, 32](padding=1保持尺寸)
x = self.bn1(x) # 批量归一化,不改变尺寸
x = self.relu1(x) # 激活函数,不改变尺寸
x = self.pool1(x) # 池化后尺寸:[batch_size, 32, 16, 16](32→16是因为池化窗口2x2)
# ---------- 卷积块2处理 ----------
x = self.conv2(x) # 卷积后尺寸:[batch_size, 64, 16, 16](padding=1保持尺寸)
x = self.bn2(x)
x = self.relu2(x)
x = self.pool2(x) # 池化后尺寸:[batch_size, 64, 8, 8]
# ---------- 卷积块3处理 ----------
x = self.conv3(x) # 卷积后尺寸:[batch_size, 128, 8, 8](padding=1保持尺寸)
x = self.bn3(x)
x = self.relu3(x)
x = self.pool3(x) # 池化后尺寸:[batch_size, 128, 4, 4]
# ---------- 展平与全连接层 ----------
# 将多维特征图展平为一维向量:[batch_size, 128*4*4] = [batch_size, 2048]
x = x.view(-1, 128 * 4 * 4) # -1自动计算批量维度,保持批量大小不变
x = self.fc1(x) # 全连接层:2048→512,尺寸变为[batch_size, 512]
x = self.relu3(x) # 激活函数(复用relu3,与卷积块3共用)
x = self.dropout(x) # Dropout随机丢弃神经元,不改变尺寸
x = self.fc2(x) # 全连接层:512→10,尺寸变为[batch_size, 10](未激活,直接输出logits)
return x # 输出未经过Softmax的logits,适用于交叉熵损失函数
# 初始化模型
model = CNN()
model = model.to(device) # 将模型移至GPU(如果可用)
criterion = nn.CrossEntropyLoss() # 交叉熵损失函数
optimizer = optim.Adam(model.parameters(), lr=0.001) # Adam优化器
# 引入学习率调度器,在训练过程中动态调整学习率--训练初期使用较大的 LR 快速降低损失,训练后期使用较小的 LR 更精细地逼近全局最优解。
# 在每个 epoch 结束后,需要手动调用调度器来更新学习率,可以在训练过程中调用 scheduler.step()
scheduler = optim.lr_scheduler.ReduceLROnPlateau(
optimizer, # 指定要控制的优化器(这里是Adam)
mode='min', # 监测的指标是"最小化"(如损失函数)
patience=3, # 如果连续3个epoch指标没有改善,才降低LR
factor=0.5 # 降低LR的比例(新LR = 旧LR × 0.5)
)
# 5. 训练模型(记录每个 iteration 的损失)
def train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs):
model.train() # 设置为训练模式
# 记录每个 iteration 的损失
all_iter_losses = [] # 存储所有 batch 的损失
iter_indices = [] # 存储 iteration 序号
# 记录每个 epoch 的准确率和损失
train_acc_history = []
test_acc_history = []
train_loss_history = []
test_loss_history = []
for epoch in range(epochs):
running_loss = 0.0
correct = 0
total = 0
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device) # 移至GPU
optimizer.zero_grad() # 梯度清零
output = model(data) # 前向传播
loss = criterion(output, target) # 计算损失
loss.backward() # 反向传播
optimizer.step() # 更新参数
# 记录当前 iteration 的损失
iter_loss = loss.item()
all_iter_losses.append(iter_loss)
iter_indices.append(epoch * len(train_loader) + batch_idx + 1)
# 统计准确率和损失
running_loss += iter_loss
_, predicted = output.max(1)
total += target.size(0)
correct += predicted.eq(target).sum().item()
# 每100个批次打印一次训练信息
if (batch_idx + 1) % 100 == 0:
print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} '
f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')
# 计算当前epoch的平均训练损失和准确率
epoch_train_loss = running_loss / len(train_loader)
epoch_train_acc = 100. * correct / total
train_acc_history.append(epoch_train_acc)
train_loss_history.append(epoch_train_loss)
# 测试阶段
model.eval() # 设置为评估模式
test_loss = 0
correct_test = 0
total_test = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += criterion(output, target).item()
_, predicted = output.max(1)
total_test += target.size(0)
correct_test += predicted.eq(target).sum().item()
epoch_test_loss = test_loss / len(test_loader)
epoch_test_acc = 100. * correct_test / total_test
test_acc_history.append(epoch_test_acc)
test_loss_history.append(epoch_test_loss)
# 更新学习率调度器
scheduler.step(epoch_test_loss)
print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')
# 绘制所有 iteration 的损失曲线
plot_iter_losses(all_iter_losses, iter_indices)
# 绘制每个 epoch 的准确率和损失曲线
plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)
return epoch_test_acc # 返回最终测试准确率
# 6. 绘制每个 iteration 的损失曲线
def plot_iter_losses(losses, indices):
plt.figure(figsize=(10, 4))
plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')
plt.xlabel('Iteration(Batch序号)')
plt.ylabel('损失值')
plt.title('每个 Iteration 的训练损失')
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()
# 7. 绘制每个 epoch 的准确率和损失曲线
def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):
epochs = range(1, len(train_acc) + 1)
plt.figure(figsize=(12, 4))
# 绘制准确率曲线
plt.subplot(1, 2, 1)
plt.plot(epochs, train_acc, 'b-', label='训练准确率')
plt.plot(epochs, test_acc, 'r-', label='测试准确率')
plt.xlabel('Epoch')
plt.ylabel('准确率 (%)')
plt.title('训练和测试准确率')
plt.legend()
plt.grid(True)
# 绘制损失曲线
plt.subplot(1, 2, 2)
plt.plot(epochs, train_loss, 'b-', label='训练损失')
plt.plot(epochs, test_loss, 'r-', label='测试损失')
plt.xlabel('Epoch')
plt.ylabel('损失值')
plt.title('训练和测试损失')
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()
# 8. 执行训练和测试
epochs = 50 # 增加训练轮次为了确保收敛
print("开始使用CNN训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")
# # 保存模型
# torch.save(model.state_dict(), 'cifar10_cnn_model.pth')
# print("模型已保存为: cifar10_cnn_model.pth")
可以看到测试集一定程度上收敛了,在85%左右(还可以继续训练的),我们后续和加了通道注意力的该模型作对比,这也意味着我们进入到了消融实验的部分了。
- 过去我们都是在同一个数据集上对比不同的模型的差异,或者同一个模型不同参数下的差异,这种实验叫做对比实验。
- 在同一个数据集上,对同一个模型进行模块的增加和减少,这种实验我们称之为消融实验。通过消融实验,研究者能更清晰地理解模型各部分的作用,而对比实验则用于评估模型的整体竞争力。两者常结合使用,以全面验证模型设计的合理性。
@浙大疏锦行