作者:CSDN @ _养乐多_
本文将介绍如何使用 OpenAI 的 CLIP 模型来实现图像与文本之间的语义匹配。代码使用 Python 语言,加载多个图像与类别文本,并通过计算余弦相似度判断每张图片最匹配的文本标签。
结果如下图所示,
文章目录
一、什么是 CLIP?
CLIP(Contrastive Language–Image Pre-training)是由 OpenAI 提出的模型,它能够将图像和文本映射到同一个向量空间,从而实现跨模态的理解能力。CLIP 的强大之处在于它无需专门为某个任务训练,也能胜任广泛的图像识别和文本匹配任务。
二、准备工作
准备好一个包含若干图像的文件夹(如 ./images)。如"cat.jpg", “dog.jpg”, “car.jpg”, “mountain.jpg”, “food.jpg”。
安装第三方库
pip install torch torchvision ftfy regex tqdm
pip install git+https://github.com/openai/CLIP.git
三、代码
import torch
import clip
from PIL import Image
import os
import matplotlib.pyplot as plt
import numpy as np
from typing import List
def load_images(image_paths: List[str]) -> List[Image.Image]:
"""
加载并转换图像为RGB格式
参数:
image_paths: 图像文件路径列表
返回:
PIL Image对象列表
"""
return [Image.open(path).convert("RGB") for path in image_paths]
def compute_similarity(model, preprocess, images, texts, device):
"""
使用CLIP模型计算图像和文本之间的余弦相似度
参数:
model: CLIP模型实例
preprocess: 图像预处理函数
images: PIL Image列表
texts: 文本标签列表
device: 设备名称(cpu或cuda)
返回:
numpy数组,形状为 (图像数, 文本类别数),值为相似度分数
"""
# 预处理图像,转为tensor并堆叠到一个batch,放到指定设备
image_tensors = torch.stack([preprocess(img) for img in images]).to(device)
# 对文本进行tokenize并放到设备
text_tokens = clip.tokenize(texts).to(device)
with torch.no_grad():
# 编码图像和文本特征
image_features = model.encode_image(image_tensors)
text_features = model.encode_text(text_tokens)
# 对特征做归一化,方便计算余弦相似度
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
# 计算余弦相似度矩阵 (图像特征 @ 文本特征转置)
similarity = image_features @ text_features.T
return similarity.cpu().numpy()
def visualize_similarity_matrix_with_images(images, image_paths, categories, similarity):
"""
可视化相似度矩阵,左侧显示对应图片,右侧按类别显示彩虹色相似度色块,色块内标注相似度数值
参数:
images: PIL Image列表
image_paths: 图像路径列表(用于显示文件名)
categories: 文本类别标签列表
similarity: numpy数组,图像与文本类别的相似度矩阵
"""
num_images = len(images)
num_categories = len(categories)
# 计算相似度最小和最大值,用于归一化色带映射
min_val = similarity.min()
max_val = similarity.max()
# 创建子图,列数比类别数多1列,用于放图片
fig, axs = plt.subplots(num_images, num_categories + 1, figsize=(2 * (num_categories + 1), 2 * num_images))
if num_images == 1:
axs = axs.reshape(1, -1) # 保证axs是2D数组,方便统一处理
# 去除子图间距,保证格子紧密无缝隙
plt.subplots_adjust(wspace=0, hspace=0)
# 第一行显示类别标题(只显示文字,不显示轴)
for j in range(num_categories):
axs[0, j+1].set_title(categories[j], fontsize=11, pad=6)
axs[0, j+1].axis('off')
axs[0, 0].axis('off') # 左上角空白
# 遍历每张图片和每个类别
for i in range(num_images):
# 左侧显示图片,不显示坐标轴
axs[i, 0].imshow(images[i])
axs[i, 0].axis('off')
# 图片文件名作为标题
axs[i, 0].set_title(os.path.basename(image_paths[i]), fontsize=8, pad=4)
for j in range(num_categories):
sim_val = similarity[i, j]
# 将相似度归一化到0-1区间,用于颜色映射
norm_val = (sim_val - min_val) / (max_val - min_val) if max_val > min_val else 0
# 使用彩虹色带(rainbow)映射相似度
color = plt.cm.rainbow(norm_val)
# 显示彩色方块
axs[i, j+1].imshow(np.ones((20,20,3)) * color[:3])
axs[i, j+1].axis('off')
# 根据颜色亮度选择文字颜色,保证对比度,易读性
brightness = 0.299 * color[0] + 0.587 * color[1] + 0.114 * color[2]
font_color = 'black' if brightness > 0.6 else 'white'
# 在色块中心写入相似度数值
axs[i, j+1].text(10, 10, f"{sim_val:.2f}", ha='center', va='center', fontsize=9, color=font_color)
# 自动紧凑布局,去除多余边距
plt.tight_layout(pad=0)
plt.show()
def main():
# 选择设备,优先cuda,否则cpu
device = "cuda" if torch.cuda.is_available() else "cpu"
# 加载CLIP模型和对应的图像预处理函数
model, preprocess = clip.load("ViT-B/32", device=device)
# 指定图像文件夹路径
image_folder = "./images"
# 遍历文件夹,筛选常见图片格式路径
image_paths = [os.path.join(image_folder, f) for f in os.listdir(image_folder)
if f.lower().endswith(('jpg', 'png', 'jpeg'))]
# 读取所有图像
images = load_images(image_paths)
# 设定要匹配的文本类别
categories = ["cat", "dog", "car", "mountain", "food"]
# 计算图像与文本类别的相似度矩阵
similarity = compute_similarity(model, preprocess, images, categories, device)
# 输出每张图片匹配度最高的类别及相似度
for i, path in enumerate(image_paths):
best_idx = similarity[i].argmax()
print(f"Image: {os.path.basename(path)} => Best match: '{categories[best_idx]}' (Similarity: {similarity[i][best_idx]:.4f})")
# 可视化相似度矩阵
visualize_similarity_matrix_with_images(images, image_paths, categories, similarity)
if __name__ == "__main__":
main()
谢谢各位读者对本人文章的关注和支持!
四、代码2
和第三部分一样,只是可视化效果不一样。
import torch
import clip
from PIL import Image
import os
import matplotlib.pyplot as plt
import seaborn as sns
from typing import List
def load_images(image_paths: List[str]) -> List[Image.Image]:
return [Image.open(path).convert("RGB") for path in image_paths]
def compute_similarity(model, preprocess, images, texts, device):
image_tensors = torch.stack([preprocess(img) for img in images]).to(device)
text_tokens = clip.tokenize(texts).to(device)
with torch.no_grad():
image_features = model.encode_image(image_tensors)
text_features = model.encode_text(text_tokens)
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
similarity = image_features @ text_features.T
return similarity.cpu().numpy()
def visualize_similarity_matrix(image_paths, categories, similarity):
plt.figure(figsize=(12, max(4, len(image_paths) * 0.5)))
sns.heatmap(similarity, xticklabels=categories, yticklabels=[os.path.basename(p) for p in image_paths],
cmap="YlGnBu", annot=True, fmt=".2f")
plt.xlabel("Categories")
plt.ylabel("Images")
plt.title("Image-Text Similarity Matrix")
plt.tight_layout()
plt.show()
def main():
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-B/32", device=device)
image_folder = "./images"
image_paths = [os.path.join(image_folder, f) for f in os.listdir(image_folder)
if f.lower().endswith(('jpg', 'png', 'jpeg'))]
images = load_images(image_paths)
categories = ["cat", "dog", "car", "mountain", "food"]
similarity = compute_similarity(model, preprocess, images, categories, device)
# 输出每张图片与文本类别的相似度
for i, path in enumerate(image_paths):
best_idx = similarity[i].argmax()
print(f"Image: {os.path.basename(path)} => Best match: '{categories[best_idx]}' (Similarity: {similarity[i][best_idx]:.4f})")
visualize_similarity_matrix(image_paths, categories, similarity)
if __name__ == "__main__":
main()