CUDA —— 1.2、介绍&总结 C++调用CUDA的三种使用方式(Windows下Vs2017+Qt环境)

发布于:2025-06-27 ⋅ 阅读:(15) ⋅ 点赞:(0)
Vs+Qt环境下: C++调用CUDA的三种使用方式运行效果

在这里插入图片描述


进入正文前请保证你的计算机已完成"cuda基础环境配置"

正文

     1、创建Qt工程,环境搭建参考上一篇文章中正文的第2、3节。然后设置debug模式为显示控制台。


     2、创建够下图中三个cuda文件,并写入代码

在这里插入图片描述

          CudaTest_C.cu

#include "cuda_runtime.h"
#include "device_launch_parameters.h"

#include <stdio.h>

/* 
	同一个线程块中的线程可以相互合作,不同线程块中的线程不能协作,根据此规则可以更好的配置线程的分布以适应要处理的数据。

	主机调用核函数后,控制权立即返回(相当于函数立即返回),主机和设备异步执行。所有的核函数都是异步、__global__核函数的返回值必须是void类型。
*/
__global__ void _AddKernel_(int *c, const int *a, const int *b)
{
	*c = *a + *b;

	printf("网格维度: \t\t\t(%d ,%d ,%d)\n", gridDim.x, gridDim.y, gridDim.z);
	printf("线程块维度: \t\t\t(%d ,%d ,%d)\n", blockDim.x, blockDim.y, blockDim.z);
	printf("线程块在网格中的索引: \t\t(%d ,%d ,%d)\n", blockIdx.x, blockIdx.y, blockIdx.z);
	printf("线程在其线程块中的索引: \t(%d ,%d ,%d)\n", threadIdx.x, threadIdx.y, threadIdx.z);
}

extern "C" int SampleCalc(const int a, const int b)
{
	// 创建cuda内存,并将cpu数据拷贝到gpu内存中
	int *dev_a = nullptr; cudaMalloc((void **)&dev_a, sizeof(int)); cudaMemcpy(dev_a, &a, sizeof(int), cudaMemcpyHostToDevice);
	int *dev_b = nullptr; cudaMalloc((void **)&dev_b, sizeof(int)); cudaMemcpy(dev_b, &b, sizeof(int), cudaMemcpyHostToDevice);

	// 将数据传入核函数进行计算并返回
	int *dev_c = nullptr; cudaMalloc((void **)&dev_c, sizeof(int));
	/*
		_AddKernel_<< <1, 3 >> > : 1个网格、3个线程块,所以_AddKernel_核函数会执行3次
		(1为网格数量,网格是由多个线程块组成的;3为线程块数量,线程块包含了多个线程。)
	*/
#if 1
	_AddKernel_<< <1, 3 >> > (dev_c, dev_a, dev_b);
#else
	// 64
	dim3 blocksPerGrid(2, 2, 1);
	dim3 threadsPerBlock(4, 4, 1);
	_AddKernel_ << <blocksPerGrid, threadsPerBlock >> > (dev_c, dev_a, dev_b);
#endif

	// 将gpu计算后的数据拷贝回cpu
	int c = -1; cudaMemcpy(&c, dev_c, sizeof(int), cudaMemcpyDeviceToHost);

	// 释放创建的cuda内存等
	if (dev_a) { cudaFree(dev_a); }dev_a = nullptr;
	if (dev_b) { cudaFree(dev_b); }dev_b = nullptr;
	if (dev_c) { cudaFree(dev_c); }dev_c = nullptr;
	
	cudaDeviceReset();
	cudaDeviceSynchronize();

	return c;
}


          CudaTest.cuh

#ifndef MAIN_CUH
#define MAIN_CUH

#include "cuda_runtime.h"
#include "device_launch_parameters.h"

class CudaTest
{
public:
	CudaTest();

	int RunCalc();

	cudaError_t addWithCuda(int *c, const int *a, const int *b, unsigned int size);
};

#endif


          CudaTest.cu

#include "CudaTest.cuh"

#include "stdio.h"
#include <Windows.h>

CudaTest::CudaTest() {}

__global__ void addKernel(int *c, const int *a, const int *b)
{
	int i = threadIdx.x;
	c[i] = a[i] + b[i];
}

int CudaTest::RunCalc()
{
	const int arraySize = 5;
	const int a[arraySize] = { 1, 2, 3, 4, 5 };
	const int b[arraySize] = { 10, 20, 30, 40, 50 };
	int c[arraySize] = { 0 };

	cudaError_t cudaStatus = cudaSuccess;
	for (unsigned short index = 0; index < 3; ++index)
	{
		// Add vectors in parallel.
		cudaStatus = addWithCuda(c, a, b, arraySize);
		if (cudaStatus != cudaSuccess) { fprintf(stderr, "addWithCuda failed!"); return 1; }

		printf("%d --- {1,2,3,4,5} + {10,20,30,40,50} = {%d,%d,%d,%d,%d}\n", index, c[0], c[1], c[2], c[3], c[4]);

		Sleep(1);
	}

	// cudaDeviceReset must be called before exiting in order for profiling and
	// tracing tools such as Nsight and Visual Profiler to show complete traces.
	cudaStatus = cudaDeviceReset();
	if (cudaStatus != cudaSuccess) { fprintf(stderr, "cudaDeviceReset failed!"); return 1; }


	return 0;
}

// Helper function for using CUDA to add vectors in parallel.
cudaError_t CudaTest::addWithCuda(int *c, const int *a, const int *b, unsigned int size)
{
	int *dev_a = 0;
	int *dev_b = 0;
	int *dev_c = 0;
	cudaError_t cudaStatus;


	// Choose which GPU to run on, change this on a multi-GPU system.
	cudaStatus = cudaSetDevice(0);
	if (cudaStatus != cudaSuccess) {
		fprintf(stderr, "cudaSetDevice failed!  Do you have a CUDA-capable GPU installed?");
		goto Error;
	}

	// Allocate GPU buffers for three vectors (two input, one output)    .
	cudaStatus = cudaMalloc((void**)&dev_c, size * sizeof(int));
	if (cudaStatus != cudaSuccess) {
		fprintf(stderr, "cudaMalloc failed!");
		goto Error;
	}

	cudaStatus = cudaMalloc((void**)&dev_a, size * sizeof(int));
	if (cudaStatus != cudaSuccess) {
		fprintf(stderr, "cudaMalloc failed!");
		goto Error;
	}

	cudaStatus = cudaMalloc((void**)&dev_b, size * sizeof(int));
	if (cudaStatus != cudaSuccess) {
		fprintf(stderr, "cudaMalloc failed!");
		goto Error;
	}

	// Copy input vectors from host memory to GPU buffers.
	cudaStatus = cudaMemcpy(dev_a, a, size * sizeof(int), cudaMemcpyHostToDevice);
	if (cudaStatus != cudaSuccess) {
		fprintf(stderr, "cudaMemcpy failed!");
		goto Error;
	}

	cudaStatus = cudaMemcpy(dev_b, b, size * sizeof(int), cudaMemcpyHostToDevice);
	if (cudaStatus != cudaSuccess) {
		fprintf(stderr, "cudaMemcpy failed!");
		goto Error;
	}

	// Launch a kernel on the GPU with one thread for each element.
	addKernel << <1, size >> > (dev_c, dev_a, dev_b);

	// Check for any errors launching the kernel
	cudaStatus = cudaGetLastError();
	if (cudaStatus != cudaSuccess) {
		fprintf(stderr, "addKernel launch failed: %s\n", cudaGetErrorString(cudaStatus));
		goto Error;
	}

	// cudaDeviceSynchronize waits for the kernel to finish, and returns
	// any errors encountered during the launch.
	cudaStatus = cudaDeviceSynchronize();
	if (cudaStatus != cudaSuccess) {
		fprintf(stderr, "cudaDeviceSynchronize returned error code %d after launching addKernel!\n", cudaStatus);
		goto Error;
	}

	// Copy output vector from GPU buffer to host memory.
	cudaStatus = cudaMemcpy(c, dev_c, size * sizeof(int), cudaMemcpyDeviceToHost);
	if (cudaStatus != cudaSuccess) {
		fprintf(stderr, "cudaMemcpy failed!");
		goto Error;
	}

Error:
	cudaFree(dev_c);
	cudaFree(dev_a);
	cudaFree(dev_b);

	return cudaStatus;
}


     3、写入QtWidgetsApplication1.cpp代码

#include "QtWidgetsApplication1.h"

#include <QDebug>
#include <Windows.h>

#include "CudaTest.cuh"

extern "C"
{
	int SampleCalc(const int a, const int b);
}

QtWidgetsApplication1::QtWidgetsApplication1(QWidget *parent) : QMainWindow(parent)
{
    ui.setupUi(this);

	/************************************************************************/	/* 方式一(推荐):	在.cpp中调用.cu文件内我们实现的C函数 */
	qDebug() << "SampleCalc: " << SampleCalc(10, 20) << "\n";
	/************************************************************************/


	/************************************************************************/	/* 方式二(推荐):	在.cpp中调用.cu文件内我们实现的类 */
	CudaTest _cuda_;
	qDebug() << "_cuda_.RunCalc(); -> " << _cuda_.RunCalc() << "\n";
	/************************************************************************/


	/************************************************************************/	/* 方式三(不推荐): 在.cpp中直接调cuda函数,缺点是有些cuda符号不能被编译成功 */
	int driver_version(0), runtime_version(0);
	cudaDeviceProp deviceProp;
	cudaGetDeviceProperties(&deviceProp, 0);
	printf("\nDevice%d:\"%s\"\n", 0, deviceProp.name);
	cudaDriverGetVersion(&driver_version);
	printf("CUDA驱动版本:                                   %d.%d\n", driver_version / 1000, (driver_version % 1000) / 10);
	cudaRuntimeGetVersion(&runtime_version);
	printf("CUDA运行时版本:                                 %d.%d\n", runtime_version / 1000, (runtime_version % 1000) / 10);
	printf("设备计算能力:                                   %d.%d\n", deviceProp.major, deviceProp.minor);
	printf("Total amount of Global Memory:                  %u bytes\n", deviceProp.totalGlobalMem);
	printf("Number of SMs:                                  %d\n", deviceProp.multiProcessorCount);
	printf("Total amount of Constant Memory:                %u bytes\n", deviceProp.totalConstMem);
	printf("Total amount of Shared Memory per block:        %u bytes\n", (int)deviceProp.sharedMemPerBlock);
	printf("Total number of registers available per block:  %d\n", deviceProp.regsPerBlock);
	printf("Warp size:                                      %d\n", deviceProp.warpSize);
	printf("Maximum number of threads per SM:               %d\n", deviceProp.maxThreadsPerMultiProcessor);
	printf("Maximum number of threads per block:            %d\n", deviceProp.maxThreadsPerBlock);
	printf("Maximum size of each dimension of a block:      %d x %d x %d\n", deviceProp.maxThreadsDim[0],
		deviceProp.maxThreadsDim[1],
		deviceProp.maxThreadsDim[2]);
	printf("Maximum size of each dimension of a grid:       %d x %d x %d\n", deviceProp.maxGridSize[0], deviceProp.maxGridSize[1], deviceProp.maxGridSize[2]);
	printf("Maximum memory pitch:                           %u bytes\n", deviceProp.memPitch);
	printf("Texture alignmemt:                              %u bytes\n", deviceProp.texturePitchAlignment);
	printf("Clock rate:                                     %.2f GHz\n", deviceProp.clockRate * 1e-6f);
	printf("Memory Clock rate:                              %.0f MHz\n", deviceProp.memoryClockRate * 1e-3f);
	printf("Memory Bus Width:                               %d-bit\n", deviceProp.memoryBusWidth);
	/************************************************************************/
}

QtWidgetsApplication1::~QtWidgetsApplication1()
{}

Vs+Qt环境下: C++调用CUDA的三种使用方式运行效果

在这里插入图片描述

关注

笔者 - 东旭


网站公告

今日签到

点亮在社区的每一天
去签到