迪杰斯特拉算法
迪杰斯特拉(Dijkstra)算法是典型**最短路径算法**,用于计算一个结点到其它结点的最短路径。它的主要特点是以起始点为中心向外扩展(利用广度优先搜索思想),直到扩展到终点。
迪杰斯特拉(Dijkstra)算法最佳应用-最短路径

- 战争时期,胜利乡有7个村庄(A,B,C,D,E,F,G),现在又六个邮差,从G点出发,需要分别把邮件送到A,B,C,D,E,F六个村庄
- 各个村庄的距离用边线表示(权),比如A-B距离5公里
- 问:如何计算出G村庄到其它各个村庄的最短距离?
- 思路分析
- 从G开始,初始化三个数组:final[]表示该顶点是否已经访问过;dist[]表示G点到其它各点之间的最短路径长度;path[]表示路径上的前驱
- 从G点(下标为6)开始,令其final[6]=true,dist[6]=0,path[6]=-1;其余顶点final[k]=false,disk[k]=arcs[6][k],path[k]=(arcs[6][k]==特定值) ? -1:6(其中arcs[u][v]代表从u顶点到v顶点的边线,这里用特定值表示不存在G顶点到某一顶点的路径)
- n-1轮处理:循环遍历所有顶点,找到还没确定最短路径,且dist最小的顶点vi,令final[i]=true。并检查所有邻接自vi的顶点vj,如果final[j]=false并且dist[i]+arcs[i][j]<dist[j],则令其dist[j]=dist[i]+arcs[i][j],path[j]=i
- 代码实现
import java.util.Arrays;
public class DijkstraDemo {
private static final int INF = Integer.MAX_VALUE;
public static void main(String[] args) {
char[] vertexes = {'A','B','C','D','E','F','G'};
int[][] matrix = {
{0,5,7,INF,INF,INF,2},
{5,0,INF,9,INF,INF,3},
{7,INF,0,INF,8,INF,INF},
{INF,9,INF,0,INF,4,INF},
{INF,INF,8,INF,0,5,4},
{INF,INF,INF,4,5,0,6},
{2,3,INF,INF,4,6,0}
};
Graph graph = new Graph(vertexes, matrix);
Dijkstra dijkstra = new Dijkstra(vertexes.length);
dijkstra.dijkstra(graph, 6);
dijkstra.show(vertexes);
}
}
class Dijkstra {
private boolean[] finalArr;
private int[] dist;
private final int[] path;
private static final int INF = Integer.MAX_VALUE;
public Dijkstra(int vertexNum) {
finalArr = new boolean[vertexNum];
dist = new int[vertexNum];
Arrays.fill(dist,INF);
path = new int[vertexNum];
Arrays.fill(path,-1);
}
public void dijkstra(Graph graph,int start) {
finalArr[start] = true;
dist[start] = 0;
path[start] = -1;
char[] vertexes = graph.getVertexes();
int[][] edges = graph.getEdges();
int length = vertexes.length;
for (int i = 0; i < length; i++) {
if (start != i) {
dist[i] = edges[start][i];
path[i] = dist[i] == INF?-1:start;
}
}
for (int i = 0; i < length - 1; i++) {
int min = INF;
int minIndex = -1;
for (int j = 0; j < length; j++) {
if (!finalArr[j] && dist[j] < min) {
min = dist[j];
minIndex = j;
}
}
finalArr[minIndex] = true;
for (int j = 0; j < length; j++) {
if (!finalArr[j] && edges[minIndex][j] != INF && (dist[minIndex] + edges[minIndex][j] < dist[j])) {
dist[j] = dist[minIndex] + edges[minIndex][j];
path[j] = minIndex;
}
}
}
}
public void show(char[] vertexes) {
int len = vertexes.length;
for(int i = 0; i < len;i++) {
System.out.println("到顶点" + vertexes[i] + "的最短路径为" + dist[i]);
int p = path[i];
System.out.print("存在的路径是:");
System.out.print(vertexes[i] + "<-");
while(p != -1) {
System.out.print(vertexes[p] + "<-");
p = path[p];
}
System.out.println();
}
}
}
class Graph {
private char[] vertexes;
private int[][] edges;
public Graph(char[] vertexes, int[][] edges) {
int length = vertexes.length;
this.vertexes = new char[length];
this.edges = new int[length][length];
for (int i = 0; i < length; i++) {
this.vertexes[i] = vertexes[i];
}
for (int i = 0; i < length; i++) {
for (int j = 0; j < length; j++) {
this.edges[i][j] = edges[i][j];
}
}
}
public char[] getVertexes() {
return vertexes;
}
public int[][] getEdges() {
return edges;
}
}