一个猜想不等式的推广
设 m⩾3m \geqslant 3m⩾3 为正整数,$a_1, a_2, \cdots, a_m $ 为正实数,则对任何实数 γ>0\gamma > 0γ>0 有
∑i=1m(aimaim+(mγ−1)∏j=1maj)1γ⩾1, \sum_{i = 1}^{m} \left( \frac{a_i^m}{a_i^m + (m^\gamma - 1) \prod\limits_{\substack{j = 1 }}^{m} a_j} \right)^{\frac{1}{\gamma}} \geqslant 1, i=1∑m aim+(mγ−1)j=1∏majaim γ1⩾1,
当且仅当 a1=a2=⋯=ama_1 = a_2 = \cdots = a_ma1=a2=⋯=am 时,等号成立.
解
令xi=(mγ−1)⋅∏j=1majaimx_{i} = \left(m^{\gamma}-1\right) \cdot \frac{\prod\limits_{j=1}^{m} a_{j}}{a_{i}^{m}}xi=(mγ−1)⋅aimj=1∏maj(i=1,2,⋯ ,mi=1,2,\cdots,mi=1,2,⋯,m),则∏i=1mxi=(mγ−1)m\prod\limits_{i=1}^{m} x_{i} = \left(m^{\gamma}-1\right)^{m}i=1∏mxi=(mγ−1)m
原不等式等价于证明:
∑i=1m(1+xi)−1γ≥1, \sum_{i=1}^{m} \left(1 + x_{i}\right)^{-\frac{1}{\gamma}} \geq 1, i=1∑m(1+xi)−γ1≥1,
其中约束条件为∏i=1mxi=(mγ−1)m\prod\limits_{i=1}^{m} x_{i} = \left(m^{\gamma}-1\right)^{m}i=1∏mxi=(mγ−1)m。
构造拉格朗日函数:
L=∑i=1m(1+xi)−1γ+λ(∏i=1mxi−(mγ−1)m) \mathcal{L}=\sum_{i=1}^{m} \left(1 + x_{i}\right)^{-\frac{1}{\gamma}} + \lambda \left( \prod_{i=1}^{m} x_{i} - \left(m^{\gamma}-1\right)^{m} \right) L=i=1∑m(1+xi)−γ1+λ(i=1∏mxi−(mγ−1)m)
有:
{∂f∂xi=−1γ(1+xi)−1γ−1+λ⋅∏j=1mxjxi=0(i=1,2,⋯ ,m),∂f∂λ=∏i=1mxi−(mγ−1)m=0. \begin{cases} \frac{\partial f}{\partial x_{i}} = -\frac{1}{\gamma} \left(1 + x_{i}\right)^{-\frac{1}{\gamma}-1} + \lambda \cdot \frac{\prod_{j=1}^{m} x_{j}}{x_{i}} = 0 \quad (i=1,2,\cdots,m), \\ \frac{\partial f}{\partial \lambda} = \prod_{i=1}^{m} x_{i} - \left(m^{\gamma}-1\right)^{m} = 0. \end{cases} {∂xi∂f=−γ1(1+xi)−γ1−1+λ⋅xi∏j=1mxj=0(i=1,2,⋯,m),∂λ∂f=∏i=1mxi−(mγ−1)m=0.
化简第一个方程,两边同乘γxi/∏j=1mxj\gamma x_{i} / \prod_{j=1}^{m} x_{j}γxi/∏j=1mxj,得:
xi(1+xi)−1γ−1=γλ(常数), x_{i} \left(1 + x_{i}\right)^{-\frac{1}{\gamma}-1} = \gamma \lambda \quad (\text{常数}), xi(1+xi)−γ1−1=γλ(常数),
即所有xix_{i}xi满足:
x1(1+x1)−1γ−1=x2(1+x2)−1γ−1=⋯=xm(1+xm)−1γ−1.(1) x_{1} \left(1 + x_{1}\right)^{-\frac{1}{\gamma}-1} = x_{2} \left(1 + x_{2}\right)^{-\frac{1}{\gamma}-1} = \cdots = x_{m} \left(1 + x_{m}\right)^{-\frac{1}{\gamma}-1}. \tag{1} x1(1+x1)−γ1−1=x2(1+x2)−γ1−1=⋯=xm(1+xm)−γ1−1.(1)
构造函数:D(s)=s(1+s)−1γ−1D(s)= s(1+s)^{-\frac{1}{\gamma}-1}D(s)=s(1+s)−γ1−1
可知,解分为两种情况:
当所有xix_{i}xi相等时,容易得到满足。
**当部分xix_{i}xi小于γ\gammaγ,其余大于γ\gammaγ**时,
设存在l∈[1,m−1]l \in [1, m-1]l∈[1,m−1](正整数),使得:
lll个变量x=xn1=⋯=xnl∈(0,γ)x = x_{n_{1}} = \cdots = x_{n_{l}} \in (0, \gamma)x=xn1=⋯=xnl∈(0,γ),
剩余m−lm-lm−l个变量y=xnl+1=⋯=xnm∈(γ,+∞)y = x_{n_{l+1}} = \cdots = x_{n_{m}} \in (\gamma, +\infty)y=xnl+1=⋯=xnm∈(γ,+∞),
且满足D(x)=D(y)D(x) = D(y)D(x)=D(y)(即x(1+x)−1γ−1=y(1+y)−1γ−1x(1+x)^{-\frac{1}{\gamma}-1} = y(1+y)^{-\frac{1}{\gamma}-1}x(1+x)−γ1−1=y(1+y)−γ1−1),以及约束xlym−l=(mγ−1)mx^{l} y^{m-l} = \left(m^{\gamma}-1\right)^{m}xlym−l=(mγ−1)m。当l∈(γγ+1m,m−1]l \in (\frac{\gamma}{\gamma+1}m, m-1]l∈(γ+1γm,m−1]时,方程组无解;
当l∈[1,γγ+1m]l \in [1, \frac{\gamma}{\gamma+1}m]l∈[1,γ+1γm]时,构造函数
H(x,y)=l(1+x)−1γ+(m−l)(1+y)−1γH(x, y) = l(1+x)^{-\frac{1}{\gamma}} + (m-l)(1+y)^{-\frac{1}{\gamma}}H(x,y)=l(1+x)−γ1+(m−l)(1+y)−γ1
其为下调和函数,最小值在边界取得。
边界分析表明:
- 当x→0+x \to 0^+x→0+时,h→l≥1h \to l \geq 1h→l≥1(因l≥1l \geq 1l≥1),
- 当x=γx = \gammax=γ时,h≥m(1+γ)−1γ>1h \geq m(1+\gamma)^{-\frac{1}{\gamma}} > 1h≥m(1+γ)−γ1>1(因(1+s)1s<e(1+s)^{\frac{1}{s}} < e(1+s)s1<e,故(1+γ)−1γ>e−1(1+\gamma)^{-\frac{1}{\gamma}} > e^{-1}(1+γ)−γ1>e−1,且m≥3m \geq 3m≥3)。
故:
设 m⩾3m \geqslant 3m⩾3 为正整数,$a_1, a_2, \cdots, a_m $ 为正实数,则对任何实数 γ>0\gamma > 0γ>0 有
∑i=1m(aimaim+(mγ−1)∏j=1maj)1γ⩾1, \sum_{i = 1}^{m} \left( \frac{a_i^m}{a_i^m + (m^\gamma - 1) \prod\limits_{\substack{j = 1 }}^{m} a_j} \right)^{\frac{1}{\gamma}} \geqslant 1, i=1∑m
aim+(mγ−1)j=1∏majaim
γ1⩾1,
当且仅当 a1=a2=⋯=ama_1 = a_2 = \cdots = a_ma1=a2=⋯=am 时,等号成立.加粗样式