14.使用GoogleNet/Inception网络进行Fashion-Mnist分类

发布于:2025-07-14 ⋅ 阅读:(12) ⋅ 点赞:(0)

14.1 GoogleNet网络结构设计

在这里插入图片描述
在这里插入图片描述

import torch
from torch import nn
from torch.nn import functional as F
from torchsummary import summary
class Inception(nn.Module):
    def __init__(self, in_channels,c1,c2,c3,c4,**kwargs):
        super(Inception,self).__init__(**kwargs)
        #第一条路线:1*1的卷积层
        self.p1_1=nn.Conv2d(in_channels,c1,kernel_size=1)
        #第二条路线:1*1的卷积层+3*3的卷积层
        self.p2_1=nn.Conv2d(in_channels,c2[0],kernel_size=1)
        self.p2_2=nn.Conv2d(c2[0],c2[1],kernel_size=3,padding=1)
        #第三条路线:1*1的卷积层+5*5的卷积层
        self.p3_1=nn.Conv2d(in_channels,c3[0],kernel_size=1)
        self.p3_2=nn.Conv2d(c3[0],c3[1],kernel_size=5,padding=2)
        #第四条路线:3*3Maxpool+1*1 convs
        self.p4_1=nn.MaxPool2d(kernel_size=3,stride=1,padding=1)
        self.p4_2=nn.Conv2d(in_channels,c4,kernel_size=1)
    def forward(self,x):
        p1=F.relu(self.p1_1(x))#第一层
        p2=F.relu(self.p2_2(F.relu(self.p2_1(x))))
        p3=F.relu(self.p3_2(F.relu(self.p3_1(x))))
        p4=F.relu(self.p4_2(self.p4_1(x)))
        ft=torch.concat((p1,p2,p3,p4),dim=1)
        return ft
#组建googlenet
b1=nn.Sequential(nn.Conv2d(1,64,kernel_size=7,stride=2,padding=3),nn.ReLU(),
                 nn.MaxPool2d(kernel_size=3,stride=2,padding=1))
b2=nn.Sequential(nn.Conv2d(64,64,kernel_size=1),nn.ReLU(),
                 nn.Conv2d(64,192,kernel_size=3,padding=1),nn.ReLU(),
                 nn.MaxPool2d(kernel_size=3,stride=2,padding=1))
b3=nn.Sequential(Inception(192,64,(96,128),(16,32),32),
                 Inception(256,128,(128,192),(32,96),64),
                 nn.MaxPool2d(kernel_size=3,stride=2,padding=1))
b4=nn.Sequential(Inception(480,192,(96,208),(16,48),64),
                 Inception(512,160,(112,224),(24,64),64),
                 Inception(512,128,(128,256),(24,64),64),
                 Inception(512,112,(144,288),(32,64),64),
                 Inception(528,256,(160,320),(32,128),128),
                 nn.MaxPool2d(kernel_size=3,stride=2,padding=1))
b5=nn.Sequential(Inception(832,64,(96,128),(16,32),32),
                 Inception(256,128,(128,192),(32,96),64),
                 nn.AdaptiveAvgPool2d((1,1)),
                 nn.Flatten())
device=torch.device("cuda" if torch.cuda.is_available() else 'cpu')
model=nn.Sequential(b1,b2,b3,b4,b5,nn.Linear(480,10)).to(device)
summary(model,input_size=(1,224,224),batch_size=1)

在这里插入图片描述

14.2 GoogleNet网络实现Fashion-Mnist分类

import torch
import torchvision
from torch import nn
import matplotlib.pyplot as plt
from torchvision.transforms import transforms
from torch.utils.data import DataLoader
from tqdm import tqdm
from sklearn.metrics import accuracy_score
from torch.nn import functional as F
plt.rcParams['font.family']=['Times New Roman']
class Reshape(torch.nn.Module):
    def forward(self,x):
        return x.view(-1,1,28,28)#[bs,1,28,28]
def plot_metrics(train_loss_list, train_acc_list, test_acc_list, title='Training Curve'):
    epochs = range(1, len(train_loss_list) + 1)
    plt.figure(figsize=(4, 3))
    plt.plot(epochs, train_loss_list, label='Train Loss')
    plt.plot(epochs, train_acc_list, label='Train Acc',linestyle='--')
    plt.plot(epochs, test_acc_list, label='Test Acc', linestyle='--')
    plt.xlabel('Epoch')
    plt.ylabel('Value')
    plt.title(title)
    plt.legend()
    plt.grid(True)
    plt.tight_layout()
    plt.show()
def train_model(model,train_data,test_data,num_epochs):
    train_loss_list = []
    train_acc_list = []
    test_acc_list = []
    for epoch in range(num_epochs):
        total_loss=0
        total_acc_sample=0
        total_samples=0
        loop=tqdm(train_data,desc=f"EPOCHS[{epoch+1}/{num_epochs}]")
        for X,y in loop:
            #X=X.reshape(X.shape[0],-1)
            #print(X.shape)
            X=X.to(device)
            y=y.to(device)
            y_hat=model(X)
            loss=CEloss(y_hat,y)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            #loss累加
            total_loss+=loss.item()*X.shape[0]
            y_pred=y_hat.argmax(dim=1).detach().cpu().numpy()
            y_true=y.detach().cpu().numpy()
            total_acc_sample+=accuracy_score(y_pred,y_true)*X.shape[0]#保存样本数
            total_samples+=X.shape[0]
        test_acc_samples=0
        test_samples=0
        for X,y in test_data:
            X=X.to(device)
            y=y.to(device)
            #X=X.reshape(X.shape[0],-1)
            y_hat=model(X)
            y_pred=y_hat.argmax(dim=1).detach().cpu().numpy()
            y_true=y.detach().cpu().numpy()
            test_acc_samples+=accuracy_score(y_pred,y_true)*X.shape[0]#保存样本数
            test_samples+=X.shape[0]
        avg_train_loss=total_loss/total_samples
        avg_train_acc=total_acc_sample/total_samples
        avg_test_acc=test_acc_samples/test_samples
        train_loss_list.append(avg_train_loss)
        train_acc_list.append(avg_train_acc)
        test_acc_list.append(avg_test_acc)
        print(f"Epoch {epoch+1}: Loss: {avg_train_loss:.4f},Trian Accuracy: {avg_train_acc:.4f},test Accuracy: {avg_test_acc:.4f}")
    plot_metrics(train_loss_list, train_acc_list, test_acc_list)
    return model
def init_weights(m):
    if type(m) == nn.Linear or type(m) == nn.Conv2d:
        nn.init.xavier_uniform_(m.weight)
class Inception(nn.Module):
    def __init__(self, in_channels,c1,c2,c3,c4,**kwargs):
        super(Inception,self).__init__(**kwargs)
        #第一条路线:1*1的卷积层
        self.p1_1=nn.Conv2d(in_channels,c1,kernel_size=1)
        #第二条路线:1*1的卷积层+3*3的卷积层
        self.p2_1=nn.Conv2d(in_channels,c2[0],kernel_size=1)
        self.p2_2=nn.Conv2d(c2[0],c2[1],kernel_size=3,padding=1)
        #第三条路线:1*1的卷积层+5*5的卷积层
        self.p3_1=nn.Conv2d(in_channels,c3[0],kernel_size=1)
        self.p3_2=nn.Conv2d(c3[0],c3[1],kernel_size=5,padding=2)
        #第四条路线:3*3Maxpool+1*1 convs
        self.p4_1=nn.MaxPool2d(kernel_size=3,stride=1,padding=1)
        self.p4_2=nn.Conv2d(in_channels,c4,kernel_size=1)
    def forward(self,x):
        p1=F.relu(self.p1_1(x))#第一层
        p2=F.relu(self.p2_2(F.relu(self.p2_1(x))))
        p3=F.relu(self.p3_2(F.relu(self.p3_1(x))))
        p4=F.relu(self.p4_2(self.p4_1(x)))
        ft=torch.concat((p1,p2,p3,p4),dim=1)
        return ft
#组建googlenet
b1=nn.Sequential(nn.Conv2d(1,64,kernel_size=7,stride=2,padding=3),nn.ReLU(),
                 nn.MaxPool2d(kernel_size=3,stride=2,padding=1))
b2=nn.Sequential(nn.Conv2d(64,64,kernel_size=1),nn.ReLU(),
                 nn.Conv2d(64,192,kernel_size=3,padding=1),nn.ReLU(),
                 nn.MaxPool2d(kernel_size=3,stride=2,padding=1))
b3=nn.Sequential(Inception(192,64,(96,128),(16,32),32),
                 Inception(256,128,(128,192),(32,96),64),
                 nn.MaxPool2d(kernel_size=3,stride=2,padding=1))
b4=nn.Sequential(Inception(480,192,(96,208),(16,48),64),
                 Inception(512,160,(112,224),(24,64),64),
                 Inception(512,128,(128,256),(24,64),64),
                 Inception(512,112,(144,288),(32,64),64),
                 Inception(528,256,(160,320),(32,128),128),
                 nn.MaxPool2d(kernel_size=3,stride=2,padding=1))
b5=nn.Sequential(Inception(832,64,(96,128),(16,32),32),
                 Inception(256,128,(128,192),(32,96),64),
                 nn.AdaptiveAvgPool2d((1,1)),
                 nn.Flatten())
device=torch.device("cuda:1" if torch.cuda.is_available() else 'cpu')
model=nn.Sequential(b1,b2,b3,b4,b5,nn.Linear(480,10)).to(device)
transforms=transforms.Compose([transforms.Resize(96),transforms.ToTensor(),transforms.Normalize((0.5,),(0.5,))])#第一个是mean,第二个是std
train_img=torchvision.datasets.FashionMNIST(root="./data",train=True,transform=transforms,download=True)
test_img=torchvision.datasets.FashionMNIST(root="./data",train=False,transform=transforms,download=True)
train_data=DataLoader(train_img,batch_size=128,num_workers=4,shuffle=True)
test_data=DataLoader(test_img,batch_size=128,num_workers=4,shuffle=False)
################################################################################################################
model.apply(init_weights)
optimizer=torch.optim.SGD(model.parameters(),lr=0.01,momentum=0.9)
CEloss=nn.CrossEntropyLoss()
model=train_model(model,train_data,test_data,num_epochs=15)
################################################################################################################

在这里插入图片描述


网站公告

今日签到

点亮在社区的每一天
去签到