图机器学习(10)——监督学习中的图神经网络

发布于:2025-07-17 ⋅ 阅读:(18) ⋅ 点赞:(0)

图机器学习(10)——监督学习中的图神经网络

1. 图卷积神经网络

在无监督图学习中,我们学习了图神经网络 (graph nerual network, GNN) 和图卷积网络 (graph convolutional network, GCN) 的核心原理,重点区分了谱图卷积与空间图卷积的差异。具体而言,我们深入理解了 GCN 层如何通过保持节点相似性等图属性,在无监督环境下实现图结构或节点的编码。
在本节中,将探索监督学习框架下的这些方法。此时的核心目标转变为:学习能够精准预测节点或图标签的图/节点表征。需要注意的是,编码函数保持不变,改变的是优化目标。

2. 使用 GCN 进行图分类

(1) 使用 PROTEINS 数据集:

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.data import DataLoader
from torch_geometric.nn import global_sort_pool, GCNConv
from torch_geometric.datasets import TUDataset
from sklearn.model_selection import train_test_split
import numpy as np

# Load PROTEINS dataset
dataset = TUDataset(root='data/TUDataset', name='PROTEINS')

(2) 接下来,实现图分类 GCN 算法。构建 GCN 模型:

class DGCNN(nn.Module):
    def __init__(self, hidden_channels=32, num_layers=4, k=35):
        super(DGCNN, self).__init__()
        self.k = k
        self.convs = nn.ModuleList()
        for _ in range(num_layers):
            self.convs.append(GCNConv(-1, hidden_channels))
        
        # Corrected Conv1d layers
        self.conv1 = nn.Conv1d(hidden_channels * num_layers, 16, kernel_size=1)
        self.pool = nn.MaxPool1d(kernel_size=2)
        self.conv2 = nn.Conv1d(16, 32, kernel_size=5, stride=1)
        
        # Calculate the correct input size for the linear layer
        # After sort pooling: [batch_size, k * hidden_channels * num_layers]
        # After conv1: [batch_size, 16, k]
        # After pool: [batch_size, 16, k//2]
        # After conv2: [batch_size, 32, (k//2)-4]
        linear_input_size = 32 * ((k // 2) - 4)
        
        self.fc1 = nn.Linear(linear_input_size, 128)
        self.dropout = nn.Dropout(0.5)
        self.fc2 = nn.Linear(128, 1)
        
    def forward(self, x, edge_index, batch):
        xs = []
        for conv in self.convs:
            x = torch.tanh(conv(x, edge_index))
            xs.append(x)
        
        x = torch.cat(xs, dim=1)
        x = global_sort_pool(x, batch, self.k)  # [batch_size, k * hidden_channels * num_layers]
        
        # Reshape for Conv1d: [batch_size, channels, sequence_length]
        batch_size = len(torch.unique(batch))
        x = x.view(batch_size, self.k, -1)  # [batch_size, k, hidden_channels * num_layers]
        x = x.permute(0, 2, 1)  # [batch_size, hidden_channels * num_layers, k]
        
        x = F.relu(self.conv1(x))
        x = self.pool(x)
        x = F.relu(self.conv2(x))
        x = x.view(batch_size, -1)  # Flatten
        x = F.relu(self.fc1(x))
        x = self.dropout(x)
        x = torch.sigmoid(self.fc2(x))
        return x

(3) 实例化模型,使用二元交叉熵损失函数(用于衡量预测标签与真实标签之间的差异),并使用 Adam 优化器,学习率为 0.0001

model = DGCNN(hidden_channels=32, num_layers=4, k=35)
optimizer = torch.optim.Adam(model.parameters(), lr=0.0001)
criterion = nn.BCELoss()

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)

(4) 创建训练集和测试集,在本节中,使用 70% 的数据集作为训练集,剩余的作为测试集:

train_idx, test_idx = train_test_split(
    range(len(dataset)), 
    test_size=0.3, 
    stratify=[data.y.item() for data in dataset],
    random_state=42
)

train_dataset = dataset[train_idx]
test_dataset = dataset[test_idx]

train_loader = DataLoader(train_dataset, batch_size=50, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=1, shuffle=False)

(5) 训练模型 100epoch

def train():
    model.train()
    total_loss = 0
    for data in train_loader:
        data = data.to(device)
        optimizer.zero_grad()
        out = model(data.x, data.edge_index, data.batch)
        loss = criterion(out, data.y.float().unsqueeze(1))
        loss.backward()
        optimizer.step()
        total_loss += loss.item() * data.num_graphs
    return total_loss / len(train_dataset)

def test(loader):
    model.eval()
    correct = 0
    for data in loader:
        data = data.to(device)
        with torch.no_grad():
            pred = model(data.x, data.edge_index, data.batch)
        pred = (pred > 0.5).float()
        correct += int((pred == data.y.unsqueeze(1)).sum())
    return correct / len(loader.dataset)

# Training loop
for epoch in range(1, 101):
    loss = train()
    train_acc = test(train_loader)
    test_acc = test(test_loader)
    print(f'Epoch: {epoch:03d}, Loss: {loss:.4f}, Train Acc: {train_acc:.4f}, Test Acc: {test_acc:.4f}')

训练过程输出如下所示,可以看到在训练集上准确率可以达到 75%,在测试集上达到了约 74% 的准确率:

Epoch: 100, Loss: 0.4896, Train Acc: 0.7599, Test Acc: 0.7485

3. 使用 GraphSAGE 进行节点分类

(1) 接下来,我们将训练 GraphSAGE 来对 Cora 数据集的节点进行分类。首先加载数据集:

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.datasets import Planetoid
from torch_geometric.nn import SAGEConv
from sklearn.model_selection import train_test_split
import numpy as np

# Load Cora dataset
dataset = Planetoid(root='data/Planetoid', name='Cora')
data = dataset[0]

(2) 拆分数据集,使用 90% 的数据集作为训练集,剩余部分作为测试集:

nodes = np.arange(data.num_nodes)
train_nodes, test_nodes = train_test_split(
    nodes, train_size=0.1, test_size=None, stratify=data.y.numpy()
)

data.train_mask = torch.zeros(data.num_nodes, dtype=torch.bool)
data.train_mask[train_nodes] = True
data.test_mask = torch.zeros(data.num_nodes, dtype=torch.bool)
data.test_mask[test_nodes] = True

(3) 创建模型。在本节中,使用一个三层的 GraphSAGE 编码器,分别为 323216 维度。然后,编码器将连接到一个具有 softmax 激活的全连接层来执行分类。使用学习率为 0.03Adam 优化器,并将损失函数设置为categorical_crossentropy

class GraphSAGE(nn.Module):
    def __init__(self, in_channels, hidden_channels, out_channels, num_layers, dropout):
        super(GraphSAGE, self).__init__()
        self.convs = nn.ModuleList()
        self.convs.append(SAGEConv(in_channels, hidden_channels))
        
        for _ in range(num_layers - 2):
            self.convs.append(SAGEConv(hidden_channels, hidden_channels))
            
        self.convs.append(SAGEConv(hidden_channels, out_channels))
        self.dropout = dropout

    def forward(self, x, edge_index):
        for i, conv in enumerate(self.convs[:-1]):
            x = conv(x, edge_index)
            x = F.relu(x)
            x = F.dropout(x, p=self.dropout, training=self.training)
        x = self.convs[-1](x, edge_index)
        return F.log_softmax(x, dim=-1)

model = GraphSAGE(
    in_channels=dataset.num_features,
    hidden_channels=32,
    out_channels=dataset.num_classes,
    num_layers=3,
    dropout=0.6
)

optimizer = torch.optim.Adam(model.parameters(), lr=0.003)
criterion = nn.NLLLoss()

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
data = data.to(device)

(4) 训练模型 20epoch

def train():
    model.train()
    optimizer.zero_grad()
    out = model(data.x, data.edge_index)
    loss = criterion(out[data.train_mask], data.y[data.train_mask])
    loss.backward()
    optimizer.step()
    return loss.item()

def test():
    model.eval()
    with torch.no_grad():
        out = model(data.x, data.edge_index)
    pred = out.argmax(dim=1)
    correct = (pred[data.test_mask] == data.y[data.test_mask]).sum()
    return correct / int(data.test_mask.sum())

# Training loop
for epoch in range(1, 21):
    loss = train()
    test_acc = test()
    print(f'Epoch: {epoch:02d}, Loss: {loss:.4f}, Test Acc: {test_acc:.4f}')

训练过程输出如下所示,可以看到,模型在测试集上达到了约 80% 的准确率:

训练过程输出


网站公告

今日签到

点亮在社区的每一天
去签到