【abc417】E - A Path in A Dictionary

发布于:2025-08-07 ⋅ 阅读:(30) ⋅ 点赞:(0)

Problem Statement

You are given a simple connected undirected graph G with N vertices and M edges.
The vertices of G are numbered vertex 1, vertex 2, …, vertex N, and the i-th (1≤i≤M) edge connects vertices Ui​ and Vi​.

Find the lexicographically smallest simple path from vertex X to vertex Y in G.
That is, find the lexicographically smallest among the integer sequences P=(P1​,P2​,…,P∣P∣​) that satisfy the following conditions:

  • 1≤Pi​≤N

  • If i\neqj, then Pi​\neqPj​.

  • P1​=X and P_{|P|}=Y

  • For 1≤i≤∣P∣−1, there exists an edge connecting vertices Pi​ and Pi+1​.

One can prove that such a path always exists under the constraints of this problem.

You are given T test cases, so find the answer for each.

Lexicographic order on integer sequencesAn integer sequence S=(S1​,S2​,…,S∣S∣​) is lexicographically smaller than an integer sequence T=(T1​,T2​,…,T∣T∣​) if either of the following 1. or 2. holds. Here, ∣S∣ and ∣T∣ represent the lengths of S and T, respectively.

  1. ∣S∣<∣T∣ and (S1​,S2​,…,S∣S∣​)=(T1​,T2​,…,T∣S∣​).

  2. There exists some 1≤i≤min(∣S∣,∣T∣) such that (S1​,S2​,…,Si−1​)=(T1​,T2​,…,Ti−1​) and Si​<Ti​.

Constraints

  • 1≤T≤500

  • 2≤N≤1000

  • N−1≤M≤min(2N(N−1)​,5×104)

  • 1≤X,Y≤N

  • X\neqY

  • 1≤Ui​<Vi​≤N

  • If i\neqj, then (Ui​,Vi​)\neq(Uj​,Vj​).

  • The given graph is connected.

  • The sum of N over all test cases in each input is at most 1000.

  • The sum of M over all test cases in each input is at most 5×104.

  • All input values are integers.


Input

The input is given from Standard Input in the following format:

T
case1​
case2​

caseT​

casei​ represents the i-th test case. Each test case is given in the following format:

N M X Y
U1​ V1​
U2​ V2​

UM​ VM​

Output

Output T lines.
The i-th line (1≤i≤T) should contain the vertex numbers on the simple path that is the answer to the i-th test case, in order, separated by spaces.
That is, when the answer to the i-th test case is P=(P1​,P2​,…,P∣P∣​), output P1​, P2​, …, P∣P∣​ on the i-th line in this order, separated by spaces.


Sample Input 1

2
6 10 3 5
1 2
1 3
1 5
1 6
2 4
2 5
2 6
3 4
3 5
5 6
3 2 3 2
1 3
2 3

Sample Output 1

3 1 2 5
3 2

For the first test case, graph G is as follows:

The simple paths from vertex 3 to vertex 5 on G, listed in lexicographic order, are as follows:

  • (3,1,2,5)
  • (3,1,2,6,5)
  • (3,1,5)
  • (3,1,6,2,5)
  • (3,1,6,5)
  • (3,4,2,1,5)
  • (3,4,2,1,6,5)
  • (3,4,2,5)
  • (3,4,2,6,1,5)
  • (3,4,2,6,5)
  • (3,5)

Among these, the lexicographically smallest is (3,1,2,5), so output 3,1,2,5 separated by spaces on the first line.

For the second test case, (3,2) is the only simple path from vertex 3 to vertex 2.

题目大意:找到从x到y的最小字典序通路

用邻接图存储,排序,dfs搜索,回溯,注意回溯的时候,不用把状态再改回false,因为我们在dfs到该点时,已经发现它是构不成连通的,所以下次就不需要再到达这个节点了,这样可以减少很大一部分运算,从而将TLE的代码变成AC

AC代码:

#include<bits/stdc++.h>
using namespace std;
using ll=long long;
const ll N=200010;
int n,m,x,y;
vector<int>path;
bool found;	
void dfs(int current,vector<vector<int>>&graph,vector<bool>&visit){
	path.push_back(current);
	visit[current]=true;
	if (current==y){
		found=true;
		for (int i:path)  cout<<i<<" ";
		cout<<"\n";
		return ;	
	}
	sort(graph[current].begin(),graph[current].end());
	for (auto i:graph[current]){
		if (!visit[i]&&!found){
			visit[i]=true;
			dfs(i,graph,visit);
			if (found)
			return ;
            path.pop_back();
		}
	}
}
void solve(){
	cin>>n>>m>>x>>y;
	vector<vector<int>>graph(n+1);
	for (int i=1;i<=m;i++){
		int u,v;
		cin>>u>>v;
		graph[u].push_back(v);
		graph[v].push_back(u);
	}
	path.clear();
	vector<bool>visit(n+1,false);
	found=false;
	dfs(x,graph,visit);
}
int main() {
	ios::sync_with_stdio(0);
	cin.tie(0);
	cout.tie(0);
	int T;
	cin>>T;
	while(T--){
		solve();
	}
}


网站公告

今日签到

点亮在社区的每一天
去签到