1.图像分类网络模型框架解读
- 分类网络的基本结构
- 数据加载模块:对训练数据加载
- 数据重组:组合成网络需要的形式,例如预处理、增强、各种网络处理、loss函数计算
- 优化器
- 数据加载模块
- 使用公开数据集:torchvision.datasets
- 使用自定义数据集:torch.utils.data下的Dataset、DataLoader
- 数据增强模块
- 使用torchvision.transforms
2.Cifar10数据读取
Cifar10数据集下载链接:https://pan.baidu.com/s/1Dc6eQ54CCLFdCA2ORuFChg 提取码: 5279
下在好的数据集解压后的文件
创建两个文件夹dataTrain和dataTest用于存储数据集的图片
将数据集中的训练集图片和测试集图片存入自建的文件夹中,代码如下:
import os
import cv2
import numpy as np
import glob
def unpickle(file):
import pickle
with open(file, 'rb') as fo:
dict = pickle.load(fo, encoding='bytes')
return dict
label_name = [
'airplane',
'automobile',
'bird',
'cat',
'deer',
'dog',
'frog',
'horse',
'ship',
'truck'
]
# train_list = glob.glob('cifar-10-batches-py/data_batch_*') #下载训练集图片时使用此行
train_list = glob.glob('cifar-10-batches-py/test_batch*')
# save_path = 'cifar-10-batches-py/dataTrain' #下载训练集图片时使用此行
save_path = 'cifar-10-batches-py/dataTest'
for l in train_list:
l_dict = unpickle(l)
for im_idx,im_data in enumerate(l_dict[b'data']):
im_label = l_dict[b'labels'][im_idx]
im_name = l_dict[b'filenames'][im_idx]
im_label_name = label_name[im_label]
im_data = np.reshape(im_data,[3,32,32])
im_data = np.transpose(im_data,(1,2,0))
if not os.path.exists("{}/{}".format(save_path,im_label_name)):
os.mkdir("{}/{}".format(save_path,im_label_name))
cv2.imwrite("{}/{}/{}".format(save_path,im_label_name,im_name.decode("utf-8")),im_data)
3.自定数据集加载
from torchvision import transforms
from torch.utils.data import DataLoader, Dataset
import os
from PIL import Image
import numpy as np
import glob
label_name = [
'airplane',
'automobile',
'bird',
'cat',
'deer',
'dog',
'frog',
'horse',
'ship',
'truck'
]
label_dict = {}
for idx,name in enumerate(label_name):
label_dict[name] = idx
def default_loader(path):
return Image.open(path).convert('RGB')
#数据增强方法
train_transform = transforms.Compose([
transforms.RandomResizedCrop((28,28)), #随机裁剪
transforms.RandomHorizontalFlip(), #随机水平翻转
transforms.RandomVerticalFlip(), #随机垂直翻转
transforms.RandomRotation(90), #随机旋转
transforms.RandomGrayscale(0.1), #随机灰度化
transforms.ColorJitter(0.3,0.3,0.3,0.3), #随机颜色调整
transforms.ToTensor() #转换为张量
])
class MyDataset(Dataset):
def __init__(self,im_list,transform=None,loader=default_loader):
super(MyDataset,self).__init__()
imgs = []
for im_item in im_list:
im_label_name = im_item.split("/")[-2]
imgs.append([im_item,label_dict[im_label_name]])
self.imgs = imgs
self.transform = transform
self.loader = loader
def __getitem__(self,index):
im_path,im_label = self.img[index]
im_data = self.loader(im_path)
if self.transform is not None:
im_data = self.transform(im_data)
return im_data,im_label
def __len__(self):
return len(self.imgs)
im_train_list = glob.glob("cifar-10-batches-py/dataTrain/*/*.png") #获取训练集图片路径列表
im_test_list = glob.glob("cifar-10-batches-py/dataTest/*/*.png") #获取测试集图片路径列表
train_dataset = MyDataset(im_train_list,transform=train_transform) #创建训练集数据集
test_dataset = MyDataset(im_test_list,transform=transforms.ToTensor()) #创建测试集数据集
train_data_loader = DataLoader(dataset=train_dataset,batch_size=6,shuffle=True,num_workers=4)#创建训练集数据加载器
test_data_loader = DataLoader(dataset=train_dataset,batch_size=6,shuffle=False,num_workers=4)#创建测试集数据加载器
print("num_of_train:",len(train_dataset))
print("num_of_test:",len(test_dataset))
代码运行结果:
num_of_train: 50000
num_of_test: 10000
4.VGG网络搭建
- 模型网络搭建
import torch
import torch.nn as nn
import torch.nn.functional as F
#定义vgg网络
class VGGbase(nn.Module):
#定义vgg网络的初始化函数
def __init__(self):
super(VGGbase,self).__init__() #调用父类的初始化函数
#定义第一个卷积层,图像大小:28*28
self.conv1 = nn.Sequential(
nn.Conv2d(3,64,kernel_size=3,stride=1,padding=1),
nn.BatchNorm2d(64),
nn.ReLU()
)
self.max_pooling1 = nn.MaxPool2d(kernel_size=2,stride=2) #定义最大池化层
#定义第二个卷积层,图像大小:14*14
self.conv2_1 = nn.Sequential(
nn.Conv2d(64,128,kernel_size=3,stride=1,padding=1),
nn.BatchNorm2d(128),
nn.ReLU()
)
self.conv2_2 = nn.Sequential(
nn.Conv2d(128,128,kernel_size=3,stride=1,padding=1),
nn.BatchNorm2d(128),
nn.ReLU()
)
self.max_pooling2 = nn.MaxPool2d(kernel_size=2,stride=2) #定义最大池化层
#定义第三个卷积层,图像大小:7*7
self.conv3_1 = nn.Sequential(
nn.Conv2d(128,256,kernel_size=3,stride=1,padding=1),
nn.BatchNorm2d(256),
nn.ReLU()
)
self.conv3_2 = nn.Sequential(
nn.Conv2d(256,256,kernel_size=3,stride=1,padding=1),
nn.BatchNorm2d(256),
nn.ReLU()
)
self.max_pooling3 = nn.MaxPool2d(kernel_size=2,stride=2,padding=1) #定义最大池化层
##定义第四个卷积层,图像大小:4*4
self.conv4_1 = nn.Sequential(
nn.Conv2d(256,512,kernel_size=3,stride=1,padding=1),
nn.BatchNorm2d(512),
nn.ReLU()
)
self.conv4_2 = nn.Sequential(
nn.Conv2d(512,512,kernel_size=3,stride=1,padding=1),
nn.BatchNorm2d(512),
nn.ReLU()
)
self.max_pooling4 = nn.MaxPool2d(kernel_size=2,stride=2,padding=1) #定义最大池化层
#定义FC层
self.fc = nn.Linear(4608, 10)
#定义vgg网络的前向传播函数
def forward(self,x):
batchsize = x.size(0)
out = self.conv1(x)
out = self.max_pooling1(out)
out = self.conv2_1(out)
out = self.conv2_2(out)
out = self.max_pooling2(out)
out = self.conv3_1(out)
out = self.conv3_2(out)
out = self.max_pooling3(out)
out = self.conv4_1(out)
out = self.conv4_2(out)
out = self.max_pooling4(out)
out = out.view(batchsize,-1) #将输出的三维特征图转换为一维向量
out = self.fc(out)
out = F.log_softmax(out,dim=1) #使用log_softmax函数作为激活函数
return out
def VGGNet():
return VGGbase()
- 模型训练
import torch
import torch.nn as nn
import torchvision
from vggnet import VGGNet
from cifar10Data import train_data_loader, test_data_loader
import os
import tensorboardX
# 定义训练设备
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 训练轮数
epoch_num = 200
# 学习率
lr = 0.01
# 加载网络
net = VGGNet().to(device)
#定义loss
loss_func = nn.CrossEntropyLoss()
#定义优化器
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
# 学习率衰减
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.9)
if not os.path.exists("log"):
os.mkdir("log")
writer = tensorboardX.SummaryWriter("log")
step_n = 0
for epoch in range(epoch_num):
print("epoch is:",epoch)
#训练
for i,data in enumerate(train_data_loader):
net.train()
inputs,labels = data
inputs,labels = inputs.to(device),labels.to(device)
outputs = net(inputs)
loss = loss_func(outputs,labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
writer.add_scalar("train loss",loss.item(),global_step=step_n)
im = torchvision.utils.make_grid(inputs)
writer.add_image("train image",im,global_step=step_n)
step_n += 1
if not os.path.exists("models"):
os.mkdir("models")
torch.save(net.state_dict(),"models/{}.path".format(epoch+1))
scheduler.step()
sum_loss = 0
#测试
for i,data in enumerate(train_data_loader):
net.eval()
inputs,labels = data
inputs,labels = inputs.to(device),labels.to(device)
outputs = net(inputs)
loss = loss_func(outputs,labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
sum_loss += loss.item()
im = torchvision.utils.make_grid(inputs)
writer.add_image("test image", im, global_step=step_n)
test_loss = sum_loss * 1.0 / len(train_data_loader)
writer.add_scalar("teest loss", test_loss, global_step=epoch+1)
print('test_step:', i, 'loss is:', test_loss)
writer.close()
- 训练结果
epoch is: 0
test_step: 8333 loss is: 2.306014501994137
epoch is: 1
test_step: 8333 loss is: 2.220694358253868
epoch is: 2
test_step: 8333 loss is: 2.1626519183618202
epoch is: 3
- 图表结果
5. ResNet网络搭建
- 模型网络搭建
import torch
import torch.nn as nn
import torch.nn.functional as F
# 定义ResNet内部结构
class ResBlock(nn.Module):
def __init__(self,in_channel,out_channel,stride=1):
super(ResBlock,self).__init__()
#主干分支
self.layer = nn.Sequential(
nn.Conv2d(in_channel,out_channel,kernel_size=3,stride=stride,padding=1),
nn.BatchNorm2d(out_channel),
nn.ReLU(),
nn.Conv2d(out_channel, out_channel, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(out_channel),
)
#跳连分支,需要判断是否需要跳连分支
self.shortcut = nn.Sequential()
if in_channel != out_channel or stride > 1:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channel, out_channel, kernel_size=3, stride=stride, padding=1),
nn.BatchNorm2d(out_channel),
)
def forward(self, x):
out1 = self.layer(x)
out2 = self.shortcut(x)
out = out1 + out2
out = F.relu(out)
return out
#ResNet模型搭建
class ResNet(nn.Module):
def make_layer(self,block,out_channel,stride,num_block):
layers_list = []
for i in range(num_block):
if i == 0:
in_stride = stride
else:
in_stride = 1
layers_list.append(block(self.in_channel,out_channel,in_stride))
self.in_channel = out_channel
return nn.Sequential(*layers_list)
def __init__(self,ResBlock):
super(ResNet,self).__init__()
self.in_channel = 32
self.conv1 = nn.Sequential(
nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(32),
nn.ReLU(),
)
self.layer1 = self.make_layer(ResBlock,64,2,2)
self.layer2 = self.make_layer(ResBlock, 128, 2, 2)
self.layer3 = self.make_layer(ResBlock, 256, 2, 2)
self.layer4 = self.make_layer(ResBlock, 512, 2, 2)
self.fc = nn.Linear(512,10)
def forward(self, x):
out = self.conv1(x)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = F.avg_pool2d(out, 2)
out = out.view(out.size(0), -1)
out = self.fc(out)
return out
def resnet():
return ResNet(ResBlock)
- 模型训练
import torch
import torch.nn as nn
import torchvision
from resnet import resnet
from cifar10Data import train_data_loader, test_data_loader
import os
import tensorboardX
# 定义训练设备
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 训练轮数
epoch_num = 200
# 学习率
lr = 0.01
# 加载网络
net = resnet().to(device)
#定义loss
loss_func = nn.CrossEntropyLoss()
#定义优化器
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
# 学习率衰减
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.9)
if not os.path.exists("log1"):
os.mkdir("log1")
writer = tensorboardX.SummaryWriter("log1")
step_n = 0
for epoch in range(epoch_num):
print("epoch is:",epoch)
#训练
for i,data in enumerate(train_data_loader):
net.train()
inputs,labels = data
inputs,labels = inputs.to(device),labels.to(device)
outputs = net(inputs)
loss = loss_func(outputs,labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
writer.add_scalar("train loss",loss.item(),global_step=step_n)
im = torchvision.utils.make_grid(inputs)
writer.add_image("train image",im,global_step=step_n)
step_n += 1
if not os.path.exists("models"):
os.mkdir("models")
torch.save(net.state_dict(),"models/{}.path".format(epoch+1))
scheduler.step()
sum_loss = 0
#测试
for i,data in enumerate(train_data_loader):
net.eval()
inputs,labels = data
inputs,labels = inputs.to(device),labels.to(device)
outputs = net(inputs)
loss = loss_func(outputs,labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
sum_loss += loss.item()
im = torchvision.utils.make_grid(inputs)
writer.add_image("test image", im, global_step=step_n)
test_loss = sum_loss * 1.0 / len(train_data_loader)
writer.add_scalar("teest loss", test_loss, global_step=epoch+1)
print('test_step:', i, 'loss is:', test_loss)
writer.close()
- 训练结果
epoch is: 0
test_step: 8333 loss is: 2.3071022295024948
epoch is: 1
test_step: 8333 loss is: 2.226925660673022
epoch is: 2
test_step: 8333 loss is: 2.155742327815656
epoch is: 3
test_step: 8333 loss is: 2.11763518281998
epoch is: 4
test_step: 8333 loss is: 2.0863706607283063
- 图表结果
6.MobileNetv1网络搭建
- 模型网络搭建
import torch
import torch.nn.functional as F
import torch.nn as nn
class mobilenet(nn.Module):
def conv_dw(self,in_channel, out_channel, stride):
return nn.Sequential(
nn.Conv2d(in_channels=in_channel, out_channels=in_channel, kernel_size=3, stride=stride, padding=1,
groups=in_channel, bias=False),
nn.BatchNorm2d(in_channel),
nn.ReLU(),
nn.Conv2d(in_channels=in_channel, out_channels=out_channel, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(out_channel),
nn.ReLU(),
)
def __init__(self):
super(mobilenet, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(32),
nn.ReLU(),
)
self.conv_dw2 = self.conv_dw(32, 32, 1)
self.conv_dw3 = self.conv_dw(32, 64, 2)
self.conv_dw4 = self.conv_dw(64, 64, 1)
self.conv_dw5 = self.conv_dw(64, 128, 2)
self.conv_dw6 = self.conv_dw(128, 128, 1)
self.conv_dw7 = self.conv_dw(128, 256, 2)
self.conv_dw8 = self.conv_dw(256, 256, 1)
self.conv_dw9 = self.conv_dw(256, 512, 2)
self.fc = nn.Linear(512,10)
def forward(self, x):
out = self.conv1(x)
out = self.conv_dw2(out)
out = self.conv_dw3(out)
out = self.conv_dw4(out)
out = self.conv_dw5(out)
out = self.conv_dw6(out)
out = self.conv_dw7(out)
out = self.conv_dw8(out)
out = self.conv_dw9(out)
out = F.avg_pool2d(out, 2)
out = out.view(-1,512)
out = self.fc(out)
return out
def mobilenetv1_small():
return mobilenet()
- 模型训练
import torch
import torch.nn as nn
import torchvision
from mobilenetv1 import mobilenetv1_small
from cifar10Data import train_data_loader, test_data_loader
import os
import tensorboardX
# 定义训练设备
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 训练轮数
epoch_num = 200
# 学习率
lr = 0.01
# 加载网络
net = mobilenetv1_small().to(device)
#定义loss
loss_func = nn.CrossEntropyLoss()
#定义优化器
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
# 学习率衰减
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.9)
if not os.path.exists("log2"):
os.mkdir("log2")
writer = tensorboardX.SummaryWriter("log2")
step_n = 0
for epoch in range(epoch_num):
print("epoch is:",epoch)
#训练
for i,data in enumerate(train_data_loader):
net.train()
inputs,labels = data
inputs,labels = inputs.to(device),labels.to(device)
outputs = net(inputs)
loss = loss_func(outputs,labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
writer.add_scalar("train loss",loss.item(),global_step=step_n)
im = torchvision.utils.make_grid(inputs)
writer.add_image("train image",im,global_step=step_n)
step_n += 1
if not os.path.exists("models"):
os.mkdir("models")
torch.save(net.state_dict(),"models/{}.path".format(epoch+1))
scheduler.step()
sum_loss = 0
#测试
for i,data in enumerate(train_data_loader):
net.eval()
inputs,labels = data
inputs,labels = inputs.to(device),labels.to(device)
outputs = net(inputs)
loss = loss_func(outputs,labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
sum_loss += loss.item()
im = torchvision.utils.make_grid(inputs)
writer.add_image("test image", im, global_step=step_n)
test_loss = sum_loss * 1.0 / len(train_data_loader)
writer.add_scalar("test loss", test_loss, global_step=epoch+1)
print('test_step:', i, 'loss is:', test_loss)
writer.close()
- 训练结果
epoch is: 0
test_step: 8333 loss is: 2.3168991455678207
epoch is: 1
test_step: 8333 loss is: 58.0813152680072
epoch is: 2
test_step: 8333 loss is: 239.99653513472458
epoch is: 3
test_step: 8333 loss is: 1036.717976929159
epoch is: 4
test_step: 8333 loss is: 110.44223031090523
- 图表结果
7.Inception网络搭建
- 模型网络搭建
import torch
import torch.nn as nn
import torch.nn.functional as F
def ConvBNRelu(in_channel, out_channel, kernel_size):
return nn.Sequential(
nn.Conv2d(in_channel, out_channel, kernel_size, padding=kernel_size//2),
nn.BatchNorm2d(out_channel),
nn.ReLU(inplace=True),
)
class BaseInception(nn.Module):
def __init__(self,in_channel,out_channel_list,reduce_channel_list):
super(BaseInception, self).__init__()
self.branch1_conv = ConvBNRelu(in_channel, out_channel_list[0], 1)
self.branch2_conv1 = ConvBNRelu(in_channel, reduce_channel_list[0], 1)
self.branch2_conv2 = ConvBNRelu(reduce_channel_list[0], out_channel_list[1], 3)
self.branch3_conv1 = ConvBNRelu(in_channel, reduce_channel_list[1], 1)
self.branch3_conv2 = ConvBNRelu(reduce_channel_list[1], out_channel_list[2], 5)
self.branch4_pool = nn.MaxPool2d(3, 1, padding=1)
self.branch4_conv = ConvBNRelu(in_channel, out_channel_list[3], 3)
def forward(self, x):
out1 = self.branch1_conv(x)
out2 = self.branch2_conv1(x)
out2 = self.branch2_conv2(out2)
out3 = self.branch3_conv1(x)
out3 = self.branch3_conv2(out3)
out4 = self.branch4_pool(x)
out4 = self.branch4_conv(out4)
out = torch.cat([out1, out2, out3, out4], 1)
return out
class InceptionNet(nn.Module):
def __init__(self):
super(InceptionNet, self).__init__()
self.block1 = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
)
self.block2 = nn.Sequential(
nn.Conv2d(64,128,kernel_size=3,stride=2,padding=1),
nn.BatchNorm2d(128),
nn.ReLU(),
)
self.block3 = nn.Sequential(
BaseInception(in_channel=128, out_channel_list=[64, 64, 64, 64], reduce_channel_list=[16, 16]),
nn.MaxPool2d(3, stride=2, padding=1)
)
self.block4 = nn.Sequential(
BaseInception(in_channel=256, out_channel_list=[96, 96, 96, 96], reduce_channel_list=[32, 32]),
nn.MaxPool2d(3, stride=2, padding=1)
)
self.fc = nn.Linear(384,10)
def forward(self, x):
out = self.block1(x)
out = self.block2(out)
out = self.block3(out)
out = self.block4(out)
out = F.avg_pool2d(out, 2)
out = out.view(out.size(0), -1)
out = self.fc(out)
return out
def InceptionNetSmall():
return InceptionNet()
- 模型训练
import torch
import torch.nn as nn
import torchvision
from inception import InceptionNetSmall
from cifar10Data import train_data_loader, test_data_loader
import os
import tensorboardX
# 定义训练设备
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 训练轮数
epoch_num = 200
# 学习率
lr = 0.01
# 加载网络
net = InceptionNetSmall().to(device)
#定义loss
loss_func = nn.CrossEntropyLoss()
#定义优化器
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
# 学习率衰减
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.9)
if not os.path.exists("log3"):
os.mkdir("log3")
writer = tensorboardX.SummaryWriter("log3")
step_n = 0
for epoch in range(epoch_num):
print("epoch is:",epoch)
#训练
for i,data in enumerate(train_data_loader):
net.train()
inputs,labels = data
inputs,labels = inputs.to(device),labels.to(device)
outputs = net(inputs)
loss = loss_func(outputs,labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
writer.add_scalar("train loss",loss.item(),global_step=step_n)
im = torchvision.utils.make_grid(inputs)
writer.add_image("train image",im,global_step=step_n)
step_n += 1
if not os.path.exists("models"):
os.mkdir("models")
torch.save(net.state_dict(),"models/{}.path".format(epoch+1))
scheduler.step()
sum_loss = 0
#测试
for i,data in enumerate(train_data_loader):
net.eval()
inputs,labels = data
inputs,labels = inputs.to(device),labels.to(device)
outputs = net(inputs)
loss = loss_func(outputs,labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
sum_loss += loss.item()
im = torchvision.utils.make_grid(inputs)
writer.add_image("test image", im, global_step=step_n)
test_loss = sum_loss * 1.0 / len(train_data_loader)
writer.add_scalar("test loss", test_loss, global_step=epoch+1)
print('test_step:', i, 'loss is:', test_loss)
writer.close()
- 训练结果
epoch is: 0
test_step: 8333 loss is: 2.1641721504324485
epoch is: 1
test_step: 8333 loss is: 2.106510695047678
epoch is: 2
test_step: 8333 loss is: 2.0794332600881478
epoch is: 3
test_step: 8333 loss is: 2.0550003183926497
- 图表结果
8.Pytorch提供的ResNet18模型
- pytorch中提供了很多模型,都在torchvision的models中
- 训练代码与前面的相同,只需要将模型引入,替换net的赋值即可,训练结果也与此前无太大差异,此处就不过多赘述,只给出模型代码
import torch.nn as nn
from torchvision import models
class resnet18(nn.Module):
def __init__(self):
super(resnet18, self).__init__()
self.model = models.resnet18(pretrained=True)
self.num_features = self.model.fc.in_features
self.model.fc = nn.Linear(self.num_features, 10)
def forward(self, x):
out = self.model(x)
return out
def pytorch_resnet18():
return resnet18()
全部代码的文件结构为:
知识点为听课总结笔记,课程为B站“2025最新整合!公认B站讲解最强【PyTorch】入门到进阶教程,从环境配置到算法原理再到代码实战逐一解读,比自学效果强得多!”:2025最新整合!公认B站讲解最强【PyTorch】入门到进阶教程,从环境配置到算法原理再到代码实战逐一解读,比自学效果强得多!_哔哩哔哩_bilibili
其实课程后续还有检测和分割,但是这两部分是在讲别人训练好的模型,不好做笔记,大家如果需要可以自己去看看!
所以,Pytorch学习完结撒花!!!!!!!!!!!!