目录
Ollama
下载
地址:https://ollama.com/download
安装大模型
点击下载的.dmg文件,进行安装。安装成功之后,打开命令行,输入ollama,出现ollama相关的命令
拉取大模型
输入命令:ollama pull deepseek-r1:1.5b,进入拉取镜像的元数据清单,中间有可能会出现错误,但是别担心,继续重复相同的命令,直到成功。
运行大模型
ollama run deepseek-r1:1.5b
删除大模型
ollama rm eepseek-r1:1.5b
生成fastAPI
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import requests
app = FastAPI()
# 定义请求模型
class ChatRequest(BaseModel):
prompt: str
model: str = "deepseek-r1:1.5b"
# 允许跨域请求(根据需要配置)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_methods=["*"],
allow_headers=["*"],
)
@app.post("/api/chat")
async def chat(request: ChatRequest):
ollama_url = "http://localhost:11434/api/generate"
data = {
"model": request.model,
"prompt": request.prompt,
"stream": False
}
response = requests.post(ollama_url, json=data)
if response.status_code == 200:
return {"response": response.json()["response"]}
else:
return {"error": "Failed to get response from Ollama"}, 500
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
调用API
import requests
response = requests.post(
"http://localhost:8000/api/chat",
json={"prompt": "请写一个二分查找法"}
)
print(response.json())