深度学习篇---MobileNet网络结构

发布于:2025-09-01 ⋅ 阅读:(21) ⋅ 点赞:(0)

在 PyTorch 中实现 MobileNet(以经典的 MobileNet v1 为例)并不复杂,核心是实现它的 "杀手锏"—— 深度可分离卷积。我们一步步来,从最基础的模块开始搭建,保证你能看懂每一行代码的作用。

一、先明确 MobileNet v1 的核心结构

MobileNet v1 的结构可以概括为:

输入(224×224彩色图) → 
标准卷积层 → 
13个深度可分离卷积块 → 
全局平均池化 → 
全连接层(输出1000类)

其中,深度可分离卷积块是核心,每个块由 "深度卷积 + 逐点卷积 + ReLU + 池化 (可选)" 组成。

二、PyTorch 实现 MobileNet v1 的步骤

步骤 1:导入必要的库

和之前实现其他 CNN 一样,先准备好工具:

import torch  # 核心库
import torch.nn as nn  # 神经网络层
import torch.optim as optim  # 优化器
from torch.utils.data import DataLoader  # 数据加载器
from torchvision import datasets, transforms  # 图像数据处理

步骤 2:实现核心模块 —— 深度可分离卷积块

MobileNet 的精髓在于 "深度可分离卷积",我们先定义这个基础模块:

class DepthwiseSeparableConv(nn.Module):
    def __init__(self, in_channels, out_channels, stride=1):
        super(DepthwiseSeparableConv, self).__init__()
        # 1. 深度卷积:每个输入通道用1个3×3卷积核单独处理
        self.depthwise = nn.Conv2d(
            in_channels=in_channels,
            out_channels=in_channels,  # 输出通道数=输入通道数(每个通道单独处理)
            kernel_size=3,
            stride=stride,
            padding=1,
            groups=in_channels  # 分组卷积:groups=in_channels表示每个通道单独卷积
        )
        
        # 2. 逐点卷积:用1×1卷积核融合通道(把in_channels→out_channels)
        self.pointwise = nn.Conv2d(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=1,  # 1×1卷积核
            stride=1,
            padding=0
        )
        
        # 激活函数和批归一化(提升训练稳定性)
        self.bn1 = nn.BatchNorm2d(in_channels)
        self.bn2 = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)
    
    def forward(self, x):
        # 深度卷积→批归一化→ReLU
        x = self.depthwise(x)
        x = self.bn1(x)
        x = self.relu(x)
        
        # 逐点卷积→批归一化→ReLU
        x = self.pointwise(x)
        x = self.bn2(x)
        x = self.relu(x)
        
        return x

关键解释

  • 深度卷积:通过groups=in_channels实现 "每个输入通道用自己的卷积核",比如 3 通道输入就用 3 个卷积核,每个处理 1 个通道;
  • 逐点卷积:1×1 卷积核的作用是 "融合通道",把深度卷积输出的in_channels个通道,压缩或扩展到out_channels个;
  • 批归一化(BN):MobileNet 中大量使用 BN,让训练更稳定,收敛更快。

步骤 3:搭建 MobileNet v1 完整网络

用上面定义的深度可分离卷积块,按 MobileNet v1 的结构搭建完整网络:

结构解释

  • 宽度乘法器:通过alpha参数控制所有通道数,比如alpha=0.5时通道数减半,模型更轻量;
  • 步长设计:每隔几个块用stride=2的卷积,让特征图尺寸逐步减半(224→112→56→28→14→7);
  • 全局平均池化:替代了传统 CNN 的全连接层前的拉平操作,进一步减少参数。

步骤 4:准备数据(用 CIFAR-10 演示)

MobileNet 适合移动设备,我们用 CIFAR-10(10 类)演示,输入尺寸调整为 224×224:

python

运行

# 数据预处理:缩放+裁剪+翻转+标准化
transform = transforms.Compose([
    transforms.Resize(256),  # 缩放为256×256
    transforms.RandomCrop(224),  # 随机裁剪成224×224
    transforms.RandomHorizontalFlip(),  # 随机翻转(数据增强)
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # ImageNet标准化
])

# 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(
    root='./data', train=True, download=True, transform=transform
)
test_dataset = datasets.CIFAR10(
    root='./data', train=False, download=True, transform=transform
)

# 批量加载数据(MobileNet轻量,batch_size可以设大些)
train_loader = DataLoader(train_dataset, batch_size=128, shuffle=True, num_workers=4)
test_loader = DataLoader(test_dataset, batch_size=128, shuffle=False, num_workers=4)

步骤 5:初始化模型、损失函数和优化器

python

运行

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 用width_multiplier=1.0的标准模型,输出10类(CIFAR-10)
model = MobileNetV1(num_classes=10, width_multiplier=1.0).to(device)

criterion = nn.CrossEntropyLoss()  # 交叉熵损失
# 优化器:MobileNet推荐用RMSprop,学习率0.001
optimizer = optim.RMSprop(model.parameters(), lr=0.001, momentum=0.9)

步骤 6:训练和测试函数

和之前的模型类似,训练逻辑如下:

def train(model, train_loader, criterion, optimizer, epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        
        optimizer.zero_grad()  # 清空梯度
        output = model(data)   # 模型预测
        loss = criterion(output, target)  # 计算损失
        loss.backward()        # 反向传播
        optimizer.step()       # 更新参数
        
        # 打印进度
        if batch_idx % 100 == 0:
            print(f'Epoch {epoch}, Batch {batch_idx}, Loss: {loss.item():.6f}')

def test(model, test_loader):
    model.eval()
    correct = 0
    total = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            _, predicted = torch.max(output.data, 1)
            total += target.size(0)
            correct += (predicted == target).sum().item()
    
    print(f'Test Accuracy: {100 * correct / total:.2f}%')

步骤 7:开始训练和测试

MobileNet 轻量,训练速度比 VGG 快很多,这里训练 20 轮:

for epoch in range(1, 21):
    train(model, train_loader, criterion, optimizer, epoch)
    test(model, test_loader)

在 CIFAR-10 上,MobileNet v1(width_multiplier=1.0)训练充分后准确率能达到 85% 左右,且训练速度比 VGG 快 5-10 倍。

三、完整代码总结

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms

# 1. 定义深度可分离卷积块
class DepthwiseSeparableConv(nn.Module):
    def __init__(self, in_channels, out_channels, stride=1):
        super(DepthwiseSeparableConv, self).__init__()
        # 深度卷积(每个通道单独卷积)
        self.depthwise = nn.Conv2d(
            in_channels=in_channels,
            out_channels=in_channels,
            kernel_size=3,
            stride=stride,
            padding=1,
            groups=in_channels  # 分组卷积实现深度卷积
        )
        # 逐点卷积(1×1卷积融合通道)
        self.pointwise = nn.Conv2d(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=1,
            stride=1,
            padding=0
        )
        # 批归一化和激活函数
        self.bn1 = nn.BatchNorm2d(in_channels)
        self.bn2 = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)
    
    def forward(self, x):
        x = self.depthwise(x)
        x = self.bn1(x)
        x = self.relu(x)
        
        x = self.pointwise(x)
        x = self.bn2(x)
        x = self.relu(x)
        return x

# 2. 定义MobileNet v1完整网络
class MobileNetV1(nn.Module):
    def __init__(self, num_classes=1000, width_multiplier=1.0):
        super(MobileNetV1, self).__init__()
        alpha = width_multiplier  # 宽度乘法器
        
        # 通道数(乘以宽度乘法器)
        channels = [
            int(32 * alpha),
            int(64 * alpha),
            int(128 * alpha),
            int(256 * alpha),
            int(512 * alpha),
            int(1024 * alpha)
        ]
        
        # 特征提取部分
        self.features = nn.Sequential(
            # 初始标准卷积
            nn.Conv2d(3, channels[0], kernel_size=3, stride=2, padding=1),
            nn.BatchNorm2d(channels[0]),
            nn.ReLU(inplace=True),
            
            # 13个深度可分离卷积块
            DepthwiseSeparableConv(channels[0], channels[1], stride=1),
            
            DepthwiseSeparableConv(channels[1], channels[2], stride=2),
            DepthwiseSeparableConv(channels[2], channels[2], stride=1),
            
            DepthwiseSeparableConv(channels[2], channels[3], stride=2),
            DepthwiseSeparableConv(channels[3], channels[3], stride=1),
            
            DepthwiseSeparableConv(channels[3], channels[4], stride=2),
            DepthwiseSeparableConv(channels[4], channels[4], stride=1),
            DepthwiseSeparableConv(channels[4], channels[4], stride=1),
            DepthwiseSeparableConv(channels[4], channels[4], stride=1),
            DepthwiseSeparableConv(channels[4], channels[4], stride=1),
            
            DepthwiseSeparableConv(channels[4], channels[5], stride=2),
            DepthwiseSeparableConv(channels[5], channels[5], stride=1),
            
            # 全局平均池化
            nn.AdaptiveAvgPool2d((1, 1))
        )
        
        # 分类部分
        self.classifier = nn.Linear(channels[5], num_classes)
    
    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size(0), -1)  # 拉平特征
        x = self.classifier(x)
        return x

# 3. 准备CIFAR-10数据
transform = transforms.Compose([
    transforms.Resize(256),
    transforms.RandomCrop(224),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])

train_dataset = datasets.CIFAR10(
    root='./data', train=True, download=True, transform=transform
)
test_dataset = datasets.CIFAR10(
    root='./data', train=False, download=True, transform=transform
)

train_loader = DataLoader(train_dataset, batch_size=128, shuffle=True, num_workers=4)
test_loader = DataLoader(test_dataset, batch_size=128, shuffle=False, num_workers=4)

# 4. 初始化模型、损失函数和优化器
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = MobileNetV1(num_classes=10, width_multiplier=1.0).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.RMSprop(model.parameters(), lr=0.001, momentum=0.9)

# 5. 训练函数
def train(model, train_loader, criterion, optimizer, epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        
        optimizer.zero_grad()
        output = model(data)
        loss = criterion(output, target)
        loss.backward()
        optimizer.step()
        
        if batch_idx % 100 == 0:
            print(f'Epoch {epoch}, Batch {batch_idx}, Loss: {loss.item():.6f}')

# 6. 测试函数
def test(model, test_loader):
    model.eval()
    correct = 0
    total = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            _, predicted = torch.max(output.data, 1)
            total += target.size(0)
            correct += (predicted == target).sum().item()
    print(f'Test Accuracy: {100 * correct / total:.2f}%')

# 7. 开始训练和测试
for epoch in range(1, 21):
    train(model, train_loader, criterion, optimizer, epoch)
    test(model, test_loader)
    

四、关键知识点回顾

  1. 核心模块:深度可分离卷积 = 深度卷积(分组卷积实现)+ 逐点卷积(1×1 卷积),这是 MobileNet 轻量化的关键;
  2. 宽度乘法器:通过width_multiplier参数灵活控制模型大小,比如alpha=0.5时模型参数量减少到原来的 25%;
  3. 优势体现:MobileNet v1 参数量约 420 万(仅为 VGG-16 的 3%),计算量约 0.58 亿次乘法(仅为 VGG-16 的 4%),但精度下降很少;
  4. 适用场景:代码可直接用于移动端部署,只需将训练好的模型转换为 ONNX 或 TensorRT 格式,就能在手机、嵌入式设备上高效运行。

通过这段代码,你能亲手实现这个 "移动端 AI 利器",感受轻量化 CNN 的强大魅力!


网站公告

今日签到

点亮在社区的每一天
去签到