有些内容,其实是和这篇文章是重合的:
https://blog.csdn.net/lwprain/article/details/142336420
其实说到底还是需要配下hadoop的开发环境,核心还是:
1、添加环境变量 HADOOP_HOME,内容为:D:\java\hadoop-3.3.6
2、到项目https://github.com/cdarlint/winutils/tree/master/hadoop-3.3.6/bin中,下载:
hadoop.dll、winutils.exe
放到d:\java\hadoop-3.3.6\bin中。
3、将路径D:\java\hadoop-3.3.6\bin放到PATH中
这几条,具体遇到其他问题,可以参考原文章。
工程什么的都不说了,直接贴相关的内容吧
4、pom.xml的内容:
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>groupId</groupId>
<artifactId>scala-spark01</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>jar</packaging>
<properties>
<maven.compiler.source>8</maven.compiler.source>
<maven.compiler.target>8</maven.compiler.target>
</properties>
<dependencies>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>2.12.20</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.12</artifactId>
<version>3.5.6</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>3.3.6</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<version>3.2.2</version>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
</execution>
</executions>
<configuration>
<jvmArgs>
<!-- <jvmArg>--add-exports</jvmArg>-->
<!-- <jvmArg>java.base/sun.nio.ch=ALL-UNNAMED</jvmArg>-->
<!-- <jvmArg>--add-opens</jvmArg>-->
<!-- <jvmArg>java.base/sun.nio.ch=ALL-UNNAMED</jvmArg>-->
<!-- <jvmArg>--add-opens</jvmArg>-->
<!-- <jvmArg>java.base/java.lang=ALL-UNNAMED</jvmArg>-->
</jvmArgs>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>3.2.4</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<transformers>
<transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
<mainClass>org.rainpet.WordCount</mainClass>
</transformer>
</transformers>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
5、主代码:
package org.rainpet
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
object WordCount {
def main(args: Array[String]): Unit = {
val sparkConf=new SparkConf().setAppName("WordCount").setMaster("local[2]");//创建sparkConf,设置模式为本地模式,2个线程
val sparkContext=new SparkContext(sparkConf)
// 定义输出路径
val outputPath = "file:///D:/java/wordcount_out"
// 删除已存在的输出目录
val hadoopConf = sparkContext.hadoopConfiguration
val hdfs = org.apache.hadoop.fs.FileSystem.getLocal(hadoopConf)
val outPath = new org.apache.hadoop.fs.Path(outputPath)
if (hdfs.exists(outPath)) {
hdfs.delete(outPath, true)
}
val data:RDD[String]=sparkContext.textFile("D:/java/workspace_gitee/cloud-compute-course-demo/scala-spark01/src/main/resources/word.txt")
val words :RDD[String]=data.flatMap(_.split(" "))
val wordAndOne:RDD[(String,Int)]=words.map(x=>(x,1))
val wordAndCount:RDD[(String,Int)]=wordAndOne.reduceByKey(_+_)
wordAndCount.saveAsTextFile(outputPath);//将结果保存到文件
val result:Array[(String,Int)]=wordAndCount.collect()
println(result.toBuffer)
sparkContext.stop()
}
}
6、环境:
scala:2.12.20
spark:3.5.6
hadoop:3.3.6
openjdk:1.8
运行结果:
word.txt:
hello world
hello tom
hello jerry
hi world
nice to meet you
nice to meet me