数据安全成焦点:基于Hadoop+Spark的信用卡诈骗分析系统实战教程

发布于:2025-09-06 ⋅ 阅读:(11) ⋅ 点赞:(0)

💖💖作者:计算机编程小央姐
💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我!
💛💛想说的话:感谢大家的关注与支持! 💜💜

💕💕文末获取源码

基于Hadoop+Spark的信用卡诈骗分析系统实战教程-系统功能介绍

基于Hadoop+Spark的信用卡诈骗分析系统是一个针对金融支付安全领域的大数据处理平台,该系统充分利用Hadoop分布式存储架构和Spark内存计算引擎的优势,对海量信用卡交易数据进行深度挖掘与智能分析。系统通过Django框架构建稳定的后端服务架构,采用Vue+ElementUI+Echarts技术栈打造直观的前端可视化界面,实现了从数据采集、存储、处理到展示的完整闭环。核心功能涵盖欺诈交易总体态势分析、交易属性与欺诈关联性分析、交易时空特征与欺诈行为分析、交易金额与复合场景欺诈分析以及基于K-Means聚类的交易行为分群及风险分析五个维度,能够从多个角度识别潜在的欺诈风险模式。系统运用Spark SQL进行高效的数据查询与统计分析,结合Pandas和NumPy进行精确的数值计算,通过HDFS实现海量数据的可靠存储,最终通过MySQL数据库管理分析结果,为金融机构的风险控制决策提供科学的数据支撑。

基于Hadoop+Spark的信用卡诈骗分析系统实战教程-系统技术介绍

大数据框架:Hadoop+Spark(本次没用Hive,支持定制)
开发语言:Python+Java(两个版本都支持)
后端框架:Django+Spring Boot(Spring+SpringMVC+Mybatis)(两个版本都支持)
前端:Vue+ElementUI+Echarts+HTML+CSS+JavaScript+jQuery
详细技术点:Hadoop、HDFS、Spark、Spark SQL、Pandas、NumPy
数据库:MySQL

基于Hadoop+Spark的信用卡诈骗分析系统实战教程-系统背景意义

随着移动支付和电子商务的快速发展,信用卡作为重要的支付工具在日常消费中占据着越来越重要的地位。然而,信用卡交易的便利性也为不法分子提供了实施诈骗的机会,各种形式的信用卡诈骗案件层出不穷,给持卡人和金融机构带来了巨大的经济损失。传统的人工审核方式已经无法应对日益增长的交易量和复杂多变的诈骗手段,金融机构迫切需要借助先进的技术手段来提升反欺诈能力。大数据技术的成熟为解决这一问题提供了新的思路,通过对海量交易数据进行深度分析,可以发现隐藏在数据背后的诈骗规律和异常模式。Hadoop和Spark等大数据处理框架的广泛应用,使得对TB级甚至PB级的交易数据进行实时或准实时分析成为可能,为构建智能化的反欺诈系统奠定了技术基础。
本课题虽然是一个毕业设计项目,但其研究意义体现在多个方面。从技术层面来看,该系统探索了大数据技术在金融风控领域的应用方式,通过实际的项目实践验证了Hadoop+Spark技术架构在处理复杂金融数据分析任务中的可行性和有效性,为相关技术的进一步推广应用提供了参考案例。从学术角度而言,系统采用的多维度分析方法和聚类算法为信用卡欺诈检测提供了新的分析思路,丰富了该领域的研究方法体系。在实际应用方面,该系统的可视化功能能够帮助风控人员直观地了解交易数据的分布特征和风险状况,提升风险识别的效率和准确性,虽然规模有限,但为小型金融机构或第三方支付平台提供了可参考的技术方案。同时,通过对真实交易数据的分析处理,系统能够输出具有实用价值的分析报告,为相关业务决策提供数据支持,在一定程度上体现了数据驱动决策的理念。

基于Hadoop+Spark的信用卡诈骗分析系统实战教程-系统演示视频

数据安全成焦点:基于Hadoop+Spark的信用卡诈骗分析系统实战教程

基于Hadoop+Spark的信用卡诈骗分析系统实战教程-系统演示图片

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基于Hadoop+Spark的信用卡诈骗分析系统实战教程-系统部分代码

from pyspark.sql import SparkSession

from pyspark.sql.functions import *

from pyspark.ml.clustering import KMeans

from pyspark.ml.feature import VectorAssembler

import pandas as pd

import numpy as np

from django.http import JsonResponse

spark = SparkSession.builder.appName("CreditCardFraudAnalysis").config("spark.sql.adaptive.enabled", "true").config("spark.sql.adaptive.coalescePartitions.enabled", "true").getOrCreate()

def analyze_fraud_distribution_by_attributes(request):

    df = spark.read.csv("hdfs://localhost:9000/data/card_transdata.csv", header=True, inferSchema=True)

    df.createOrReplaceTempView("transactions")

    online_fraud_stats = spark.sql("""

        SELECT 

            online_order,

            COUNT(*) as total_transactions,

            SUM(fraud) as fraud_count,

            ROUND(SUM(fraud) * 100.0 / COUNT(*), 2) as fraud_rate

        FROM transactions 

        GROUP BY online_order

        ORDER BY fraud_rate DESC

    """)

    chip_fraud_stats = spark.sql("""

        SELECT 

            used_chip,

            COUNT(*) as total_transactions,

            SUM(fraud) as fraud_count,

            ROUND(SUM(fraud) * 100.0 / COUNT(*), 2) as fraud_rate

        FROM transactions 

        GROUP BY used_chip

        ORDER BY fraud_rate DESC

    """)

    pin_fraud_stats = spark.sql("""

        SELECT 

            used_pin_number,

            COUNT(*) as total_transactions,

            SUM(fraud) as fraud_count,

            ROUND(SUM(fraud) * 100.0 / COUNT(*), 2) as fraud_rate

        FROM transactions 

        GROUP BY used_pin_number

        ORDER BY fraud_rate DESC

    """)

    retailer_fraud_stats = spark.sql("""

        SELECT 

            repeat_retailer,

            COUNT(*) as total_transactions,

            SUM(fraud) as fraud_count,

            ROUND(SUM(fraud) * 100.0 / COUNT(*), 2) as fraud_rate

        FROM transactions 

        GROUP BY repeat_retailer

        ORDER BY fraud_rate DESC

    """)

    complex_scenario_analysis = spark.sql("""

        SELECT 

            COUNT(*) as total_high_risk_transactions,

            SUM(fraud) as high_risk_fraud_count,

            ROUND(SUM(fraud) * 100.0 / COUNT(*), 2) as high_risk_fraud_rate

        FROM transactions 

        WHERE online_order = 1 AND used_pin_number = 0

    """)

    online_results = [row.asDict() for row in online_fraud_stats.collect()]

    chip_results = [row.asDict() for row in chip_fraud_stats.collect()]

    pin_results = [row.asDict() for row in pin_fraud_stats.collect()]

    retailer_results = [row.asDict() for row in retailer_fraud_stats.collect()]

    complex_results = [row.asDict() for row in complex_scenario_analysis.collect()]

    analysis_summary = {

        'online_channel_risk': online_results,

        'chip_security_impact': chip_results,

        'pin_verification_effect': pin_results,

        'retailer_familiarity_risk': retailer_results,

        'high_risk_scenario': complex_results

    }

    return JsonResponse(analysis_summary)

def analyze_spatial_temporal_fraud_patterns(request):

    df = spark.read.csv("hdfs://localhost:9000/data/card_transdata.csv", header=True, inferSchema=True)

    df.createOrReplaceTempView("transactions")

    distance_quantiles = spark.sql("SELECT percentile_approx(distance_from_home, array(0.25, 0.5, 0.75, 0.9)) as quantiles FROM transactions").collect()[0]['quantiles']

    distance_segments = spark.sql(f"""

        SELECT 

            CASE 

                WHEN distance_from_home <= {distance_quantiles[0]} THEN 'Near_Home'

                WHEN distance_from_home <= {distance_quantiles[1]} THEN 'Medium_Distance'

                WHEN distance_from_home <= {distance_quantiles[2]} THEN 'Far_Distance'

                WHEN distance_from_home <= {distance_quantiles[3]} THEN 'Very_Far'

                ELSE 'Extremely_Far'

            END as distance_segment,

            COUNT(*) as transaction_count,

            SUM(fraud) as fraud_count,

            ROUND(SUM(fraud) * 100.0 / COUNT(*), 2) as fraud_rate,

            ROUND(AVG(distance_from_home), 2) as avg_distance

        FROM transactions

        GROUP BY 

            CASE 

                WHEN distance_from_home <= {distance_quantiles[0]} THEN 'Near_Home'

                WHEN distance_from_home <= {distance_quantiles[1]} THEN 'Medium_Distance'

                WHEN distance_from_home <= {distance_quantiles[2]} THEN 'Far_Distance'

                WHEN distance_from_home <= {distance_quantiles[3]} THEN 'Very_Far'

                ELSE 'Extremely_Far'

            END

        ORDER BY fraud_rate DESC

    """)

    last_transaction_quantiles = spark.sql("SELECT percentile_approx(distance_from_last_transaction, array(0.25, 0.5, 0.75, 0.9)) as quantiles FROM transactions").collect()[0]['quantiles']

    movement_pattern_analysis = spark.sql(f"""

        SELECT 

            CASE 

                WHEN distance_from_last_transaction <= {last_transaction_quantiles[0]} THEN 'Minimal_Movement'

                WHEN distance_from_last_transaction <= {last_transaction_quantiles[1]} THEN 'Normal_Movement'

                WHEN distance_from_last_transaction <= {last_transaction_quantiles[2]} THEN 'High_Movement'

                WHEN distance_from_last_transaction <= {last_transaction_quantiles[3]} THEN 'Very_High_Movement'

                ELSE 'Extreme_Movement'

            END as movement_pattern,

            COUNT(*) as transaction_count,

            SUM(fraud) as fraud_count,

            ROUND(SUM(fraud) * 100.0 / COUNT(*), 2) as fraud_rate,

            ROUND(AVG(distance_from_last_transaction), 2) as avg_movement_distance

        FROM transactions

        GROUP BY 

            CASE 

                WHEN distance_from_last_transaction <= {last_transaction_quantiles[0]} THEN 'Minimal_Movement'

                WHEN distance_from_last_transaction <= {last_transaction_quantiles[1]} THEN 'Normal_Movement'

                WHEN distance_from_last_transaction <= {last_transaction_quantiles[2]} THEN 'High_Movement'

                WHEN distance_from_last_transaction <= {last_transaction_quantiles[3]} THEN 'Very_High_Movement'

                ELSE 'Extreme_Movement'

            END

        ORDER BY fraud_rate DESC

    """)

    comparative_distance_analysis = spark.sql("""

        SELECT 

            fraud,

            COUNT(*) as transaction_count,

            ROUND(AVG(distance_from_home), 2) as avg_home_distance,

            ROUND(AVG(distance_from_last_transaction), 2) as avg_movement_distance,

            ROUND(STDDEV(distance_from_home), 2) as home_distance_std,

            ROUND(STDDEV(distance_from_last_transaction), 2) as movement_distance_std

        FROM transactions

        GROUP BY fraud

        ORDER BY fraud

    """)

    distance_results = [row.asDict() for row in distance_segments.collect()]

    movement_results = [row.asDict() for row in movement_pattern_analysis.collect()]

    comparative_results = [row.asDict() for row in comparative_distance_analysis.collect()]

    spatial_analysis = {

        'distance_based_fraud_risk': distance_results,

        'movement_pattern_analysis': movement_results,

        'fraud_vs_normal_distance_comparison': comparative_results

    }

    return JsonResponse(spatial_analysis)

def perform_kmeans_behavioral_clustering(request):

    df = spark.read.csv("hdfs://localhost:9000/data/card_transdata.csv", header=True, inferSchema=True)

    feature_columns = ['distance_from_home', 'distance_from_last_transaction', 'ratio_to_median_purchase_price']

    assembler = VectorAssembler(inputCols=feature_columns, outputCol='features')

    df_assembled = assembler.transform(df)

    kmeans = KMeans(k=5, seed=42, featuresCol='features', predictionCol='cluster_id')

    model = kmeans.fit(df_assembled)

    df_clustered = model.transform(df_assembled)

    df_clustered.createOrReplaceTempView("clustered_transactions")

    cluster_fraud_rates = spark.sql("""

        SELECT 

            cluster_id,

            COUNT(*) as cluster_size,

            SUM(fraud) as fraud_count,

            ROUND(SUM(fraud) * 100.0 / COUNT(*), 2) as fraud_rate

        FROM clustered_transactions

        GROUP BY cluster_id

        ORDER BY fraud_rate DESC

    """)

    cluster_behavioral_profiles = spark.sql("""

        SELECT 

            cluster_id,

            COUNT(*) as cluster_size,

            ROUND(AVG(distance_from_home), 2) as avg_home_distance,

            ROUND(AVG(distance_from_last_transaction), 2) as avg_movement_distance,

            ROUND(AVG(ratio_to_median_purchase_price), 2) as avg_amount_ratio,

            ROUND(STDDEV(distance_from_home), 2) as home_distance_variance,

            ROUND(STDDEV(distance_from_last_transaction), 2) as movement_variance,

            ROUND(STDDEV(ratio_to_median_purchase_price), 2) as amount_ratio_variance

        FROM clustered_transactions

        GROUP BY cluster_id

        ORDER BY cluster_id

    """)

    cluster_channel_preferences = spark.sql("""

        SELECT 

            cluster_id,

            COUNT(*) as total_transactions,

            SUM(online_order) as online_transactions,

            ROUND(SUM(online_order) * 100.0 / COUNT(*), 2) as online_preference_rate

        FROM clustered_transactions

        GROUP BY cluster_id

        ORDER BY online_preference_rate DESC

    """)

    cluster_security_habits = spark.sql("""

        SELECT 

            cluster_id,

            COUNT(*) as total_transactions,

            SUM(used_chip) as chip_usage,

            SUM(used_pin_number) as pin_usage,

            ROUND(SUM(used_chip) * 100.0 / COUNT(*), 2) as chip_usage_rate,

            ROUND(SUM(used_pin_number) * 100.0 / COUNT(*), 2) as pin_usage_rate

        FROM clustered_transactions

        GROUP BY cluster_id

        ORDER BY cluster_id

    """)

    fraud_rates_results = [row.asDict() for row in cluster_fraud_rates.collect()]

    behavioral_profiles_results = [row.asDict() for row in cluster_behavioral_profiles.collect()]

    channel_preferences_results = [row.asDict() for row in cluster_channel_preferences.collect()]

    security_habits_results = [row.asDict() for row in cluster_security_habits.collect()]

    clustering_analysis = {

        'cluster_fraud_risk_ranking': fraud_rates_results,

        'cluster_behavioral_characteristics': behavioral_profiles_results,

        'cluster_channel_usage_patterns': channel_preferences_results,

        'cluster_security_behavior_analysis': security_habits_results

    }

    return JsonResponse(clustering_analysis)

基于Hadoop+Spark的信用卡诈骗分析系统实战教程-结语

💟💟如果大家有任何疑虑,欢迎在下方位置详细交流。


网站公告

今日签到

点亮在社区的每一天
去签到