Spark RDD转DataFrame的三种方式

发布于:2025-09-09 ⋅ 阅读:(16) ⋅ 点赞:(0)

一、手动直接转换

  def rddToDf1(): Unit = {
    val conf = new SparkConf().setMaster("local[*]").setAppName("hello world")
    val spark = SparkSession.builder().config(conf).getOrCreate()
    import spark.implicits._
    val sc = spark.sparkContext
    val rdd: RDD[(String, Int)] = sc.parallelize(Array(("李四", 10), ("zs", 20), ("王无", 21)))
    rdd.toDF("name","age").show
  }

二、使用样例类转换

  def rddToDf2(): Unit = {
    val conf = new SparkConf().setMaster("local[*]").setAppName("hello world")
    val spark = SparkSession.builder().config(conf).getOrCreate()
    import spark.implicits._
    val sc = spark.sparkContext
    val rdd: RDD[(String, Int)] = sc.parallelize(Array(("李四", 10), ("zs", 20), ("王无", 21)))
    val rdd2: RDD[User] = rdd.map(line => {
      User(line._1, line._2)
    })
    rdd2.toDF().show()
  }

三、通过API转换

  def rddToDf3(): Unit = {
     val conf = new SparkConf().setMaster("local[*]").setAppName("hello world")
    val spark = SparkSession.builder().config(conf).getOrCreate()
    val sc = spark.sparkContext
    val rdd: RDD[(String, Int)] = sc.parallelize(Array(("李四", 10), ("zs", 20), ("王无", 21)))
    val rowRdd: RDD[Row] = rdd.map(x => Row(x._1, x._2))
    val types = StructType(Array(StructField("name", StringType), StructField("age", IntegerType)))
    val frame: DataFrame = spark.createDataFrame(rowRdd, types)
    frame.show()

  }


网站公告

今日签到

点亮在社区的每一天
去签到