C++ 二叉搜索树

发布于:2025-09-11 ⋅ 阅读:(16) ⋅ 点赞:(0)

目录

1. 二叉搜索树的概念

2. 二叉搜索树的性能分析

3. 二叉搜索树的插入

4. 二叉搜索树的查找

5. 二叉搜索树的删除

6.二叉搜索树的实现


1. 二叉搜索树的概念

二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树:

  • 若它的左子树不为空,则左子树上所有结点的值都小于等于根结点的值
  • 若它的右子树不为空,则右子树上所有结点的值都大于等于根结点的值
  • 它的左右子树也分别为二叉搜索树
  • 二叉搜索树中可以支持插入相等的值,也可以不支持插入相等的值,具体看使用场景定义,后续我们学习map/set/multimap/multiset系列容器底层就是二叉搜索树,其中map/set不支持插入相等值,multimap/multiset支持插入相等值

2. 二叉搜索树的性能分析

最优情况下,二叉搜索树为完全二叉树(或者接近完全二叉树),其高度为:log₂N

最差情况下,二叉搜索树退化为单支树(或者类似单支),其高度为N

所以综合而言二叉搜索树增删查改时间复杂度为:O(N)

那么这样的效率显然是无法满足我们需求的,后续二叉搜索树的变形,平衡二叉搜索树AVL树和红黑树,才能适用于我们在内存中存储和搜索数据。

另外需要说明的是,二分查找也可以实现O(log₂N)

级别的查找效率,但是二分查找有两大缺陷:

  1. 需要存储在支持下标随机访问的结构中,并且有序。
  2. 插入和删除数据效率很低,因为存储在下标随机访问的结构中,插入和删除数据一般需要挪动数据。

这里也就体现出了平衡二叉搜索树的价值。

3. 二叉搜索树的插入

插入的具体过程如下:

  1. 树为空,则直接新增结点,赋值给root指针。

  2. 树不空,按二叉搜索树性质,插入值比当前结点大往右走,插入值比当前结点小往左走,找到空位置,插入新结点。

  3. 如果支持插入相等的值,插入值跟当前结点相等的值可以往右走,也可以往左走,找到空位置,插入新结点。(要注意的是要保持逻辑一致性,插入相等的值不要一会往右走,一会往左走)

bool Insert(const K& key)
{
	if (_root == nullptr)
	{
		_root = new Node(key);
		return true;
	}

	Node* parent = nullptr;
	Node* cur = _root;
	while (cur)
	{
		if (cur->_key > key)
		{
			parent = cur;
			cur = cur->_left;
		}
		else if (cur->_key < key)
		{
			parent = cur;
			cur = cur->_right;
		}
		else
		{
			return false;
		}
	}
	cur = new Node(key);

	if (key > parent->_key)
	{
		parent->_right = cur;
	}
	else
	{
		parent->_left = cur;
	}

	return true;
}

4. 二叉搜索树的查找

查找的具体过程如下:

  1. 从根开始比较,查找x,x比根的值大则往右边走查找,x比根值小则往左边走查找。

  2. 最多查找高度次,走到空,还没找到,这个值不存在。

  3. 如果不支持插入相等的值,找到x即可返回。

  4. 如果支持插入相等的值,意味着有多个x存在,一般要求查找中序的第一个x。如下图,查找3,要找到1的右孩子的那个3返回。

bool Find(const K& key)
{
	Node* cur = _root;
	while (cur)
	{
		if (cur->_key < key)
		{
			cur = cur->_right;
		}
		else if (cur->_key > key)
		{
			cur = cur->_left;
		}
		else
		{
			return true;
		}
	}

	return false;
}

5. 二叉搜索树的删除

首先查找元素是否在二叉搜索树中,如果不存在,则返回false。

如果查找元素存在则分以下四种情况分别处理:(假设要删除的结点为N)

1.要删除结点N左右孩子均为空

2.要删除的结点N左孩子为空,右孩子结点不为空

3.要删除的结点N右孩子为空,左孩子结点不为空

4.要删除的结点N左右孩子结点均不为空

对应以上四种情况的解决方案:

  1. 把N结点的父亲对应孩子指针指向空,直接删除N结点(情况1可以当成2或者3处理,效果是一样的)

  2. 把N结点的父亲对应孩子指针指向N的右孩子,直接删除N结点

  3. 把N结点的父亲对应孩子指针指向N的左孩子,直接删除N结点

  4. 无法直接删除N结点,因为N的两个孩子无处安放,只能用替换法删除。找N左子树的值最大结点R(最右结点)或者N右子树的值最小结点R(最左结点)替代N,因为这两个结点中任意一个,放到N的位置,都满足二叉搜索树的规则。替代N的意思就是N和R的两个结点的值交换,转而变成删除R结点,R结点符合情况2或情况3,可以直接删除。

bool Erase(const K& key)
{
	Node* parent = nullptr;
	Node* cur = _root;
	while (cur)
	{
		if (cur->_key > key)
		{
			parent = cur;
			cur = cur->_left;
		}
		else if (cur->_key < key)
		{
			parent = cur;
			cur = cur->_right;
		}
		else
		{
			//删除
			if (cur->_left == nullptr)
			{
				if (cur == _root)
				{
					_root = cur->_right;
				}
				else
				{
					// 父亲指向我的右
					if (cur == parent->_right)
					{
						parent->_right = cur->_right;
					}
					else
					{
						parent->_left = cur->_right;
					}
				}

				delete cur;
			}
			else if (cur->_right == nullptr)
			{
				if (cur == _root)
				{
					_root = cur->_left;
				}
				else
				{
					// 父亲指向我的左
					if (cur == parent->_right)
					{
						parent->_right = cur->_left;
					}
					else
					{
						parent->_left = cur->_left;
					}
				}

				delete cur;
			}
			else
			{
				//右子树最小节点替换
				Node* minright = cur->_right;
				Node* minrightparent = cur;
				while (minright->_left)
				{
					minrightparent = minright;
					minright = minright->_left;
				}

				cur->_key = minright->_key;
				if (minright == minrightparent->_left)
				{
					minrightparent->_left = minright->_right;
				}
				else
				{
					minrightparent->_right = minright->_right;
				}
				delete minright;
			}
		}
		return true;
	}
}

代码+图片辅助理解

6.二叉搜索树的实现

namespace lzg
{

	template<class K>
	struct BSTNode
	{
		K _key;
		BSTNode<K>* _left;
		BSTNode<K>* _right;

		BSTNode(const K& key) :
			_key(key),
			_left(nullptr),
			_right(nullptr)
		{}

	};

	template<class K>
	class BSTree
	{
		typedef BSTNode<K> Node;
	public:
		bool Insert(const K& key)
		{
			if (_root == nullptr)
			{
				_root = new Node(key);
				return true;
			}

			Node* parent = nullptr;
			Node* cur = _root;
			while (cur)
			{
				if (cur->_key > key)
				{
					parent = cur;
					cur = cur->_left;
				}
				else if (cur->_key < key)
				{
					parent = cur;
					cur = cur->_right;
				}
				else
				{
					return false;
				}
			}
			cur = new Node(key);

			if (key > parent->_key)
			{
				parent->_right = cur;
			}
			else
			{
				parent->_left = cur;
			}

			return true;
		}


		bool Find(const K& key)
		{
			Node* cur = _root;
			while (cur)
			{
				if (cur->_key < key)
				{
					cur = cur->_right;
				}
				else if (cur->_key > key)
				{
					cur = cur->_left;
				}
				else
				{
					return true;
				}
			}

			return false;
		}

		bool Erase(const K& key)
		{
			Node* parent = nullptr;
			Node* cur = _root;
			while (cur)
			{
				if (cur->_key > key)
				{
					parent = cur;
					cur = cur->_left;
				}
				else if (cur->_key < key)
				{
					parent = cur;
					cur = cur->_right;
				}
				else
				{
					//删除
					if (cur->_left == nullptr)
					{
						if (cur == _root)
						{
							_root = cur->_right;
						}
						else
						{
							// 父亲指向我的右
							if (cur == parent->_right)
							{
								parent->_right = cur->_right;
							}
							else
							{
								parent->_left = cur->_right;
							}
						}

						delete cur;
					}
					else if (cur->_right == nullptr)
					{
						if (cur == _root)
						{
							_root = cur->_left;
						}
						else
						{
							// 父亲指向我的左
							if (cur == parent->_right)
							{
								parent->_right = cur->_left;
							}
							else
							{
								parent->_left = cur->_left;
							}
						}

						delete cur;
					}
					else
					{
						//右子树最小节点替换
						Node* minright = cur->_right;
						Node* minrightparent = cur;
						while (minright->_left)
						{
							minrightparent = minright;
							minright = minright->_left;
						}

						cur->_key = minright->_key;
						if (minright == minrightparent->_left)
						{
							minrightparent->_left = minright->_right;
						}
						else
						{
							minrightparent->_right = minright->_right;
						}
						delete minright;
					}
				}
				return true;
			}
		}

		void InOrder()
		{
			_InOrder(_root);
			cout << endl;
		}
	private:
		void _InOrder(Node* root)
		{
			if (root == nullptr)
				return;
			_InOrder(root->_left);
			cout << root->_key << " ";
			_InOrder(root->_right);
		}

		Node* _root = nullptr;
	};
}

int main()
{
	int a[] = { 8, 3, 1, 10, 1, 6, 4, 7, 14, 13 };
	lzg::BSTree<int> t;
	for (auto e : a)
	{
		t.Insert(e);
	}

	t.InOrder();

	t.Erase(8);
	t.InOrder();

	return 0;
}


网站公告

今日签到

点亮在社区的每一天
去签到