变分法问题:极小曲面欧拉-拉格朗日方程与二维泛函驻点的推导

发布于:2025-09-13 ⋅ 阅读:(18) ⋅ 点赞:(0)

题目

问题5:如果曲面是一个旋转曲面 z=u(r)z = u(r)z=u(r),其中 r2=x2+y2r^2 = x^2 + y^2r2=x2+y2,那么

S=2π∫D1+ur2 r drS = 2\pi \int_{D} \sqrt{1 + u_{r}^{2}} \, r \, drS=2πD1+ur2 rdr (7)

写出欧拉-拉格朗日方程并求解它。

问题6:写出泛函

Φ(u)=∬D(ux2+uxuy+uy2−2uf(x,y))dxdy\Phi(u) = \iint_{D} \left( u_{x}^{2} + u_{x}u_{y} + u_{y}^{2} - 2u f(x,y) \right) dxdyΦ(u)=D(ux2+uxuy+uy22uf(x,y))dxdy

的驻点所满足的方程和边界条件,其中 D={(x,y):0<x<2,0<y<1}D = \{(x,y) : 0 < x < 2, 0 < y < 1\}D={(x,y):0<x<2,0<y<1},且边界条件为

u∣x=0=u∣x=2=0.u|_{x=0} = u|_{x=2} = 0.ux=0=ux=2=0.


解决问题5

对于旋转曲面的表面积泛函 S=2π∫D1+ur2 r drS = 2\pi \int_{D} \sqrt{1 + u_{r}^{2}} \, r \, drS=2πD1+ur2 rdr,忽略常数 2π2\pi2π,考虑泛函:
I[u]=∫abF(r,u,ur) dr I[u] = \int_{a}^{b} F(r, u, u_r) \, dr I[u]=abF(r,u,ur)dr
其中 F(r,u,ur)=1+ur2 r F(r, u, u_r) = \sqrt{1 + u_r^2} \, r F(r,u,ur)=1+ur2 r.

由于 FFF 不显含 uuu,即 ∂F∂u=0\frac{\partial F}{\partial u} = 0uF=0,欧拉-拉格朗日方程简化为:
ddr(∂F∂ur)=0 \frac{d}{dr} \left( \frac{\partial F}{\partial u_r} \right) = 0 drd(urF)=0
这意味着 ∂F∂ur\frac{\partial F}{\partial u_r}urF 为常数。

计算 ∂F∂ur\frac{\partial F}{\partial u_r}urF:
∂F∂ur=∂∂ur(r1+ur2)=r⋅12(1+ur2)−1/2⋅2ur=rur1+ur2 \frac{\partial F}{\partial u_r} = \frac{\partial}{\partial u_r} \left( r \sqrt{1 + u_r^2} \right) = r \cdot \frac{1}{2} (1 + u_r^2)^{-1/2} \cdot 2 u_r = \frac{r u_r}{\sqrt{1 + u_r^2}} urF=ur(r1+ur2 )=r21(1+ur2)1/22ur=1+ur2 rur

设其常数为 ccc:
rur1+ur2=c \frac{r u_r}{\sqrt{1 + u_r^2}} = c 1+ur2 rur=c

解方程求 uru_rur:
r2ur21+ur2=c2 \frac{r^2 u_r^2}{1 + u_r^2} = c^2 1+ur2r2ur2=c2
r2ur2=c2(1+ur2) r^2 u_r^2 = c^2 (1 + u_r^2) r2ur2=c2(1+ur2)
ur2(r2−c2)=c2 u_r^2 (r^2 - c^2) = c^2 ur2(r2c2)=c2
ur2=c2r2−c2 u_r^2 = \frac{c^2}{r^2 - c^2} ur2=r2c2c2
ur=cr2−c2 u_r = \frac{c}{\sqrt{r^2 - c^2}} ur=r2c2 c

积分求 uuu:
u=∫cr2−c2 dr=c∫drr2−c2=c ln⁡∣r+r2−c2∣+K u = \int \frac{c}{\sqrt{r^2 - c^2}} \, dr = c \int \frac{dr}{\sqrt{r^2 - c^2}} = c \, \ln \left| r + \sqrt{r^2 - c^2} \right| + K u=r2c2 cdr=cr2c2 dr=clnr+r2c2 +K
其中 KKK 为常数。

Alternatively, 用反双曲余弦表示:
u=c cosh⁡−1(rc)+K u = c \, \cosh^{-1} \left( \frac{r}{c} \right) + K u=ccosh1(cr)+K

r=ccosh⁡(u−Kc) r = c \cosh \left( \frac{u - K}{c} \right) r=ccosh(cuK)
此解对应悬链线,即最小旋转曲面(catenoid)。


解决问题6

泛函:
Φ(u)=∬D(ux2+uxuy+uy2−2uf(x,y))dxdy \Phi(u) = \iint_{D} \left( u_{x}^{2} + u_{x}u_{y} + u_{y}^{2} - 2u f(x,y) \right) dxdy Φ(u)=D(ux2+uxuy+uy22uf(x,y))dxdy
其中 D={(x,y):0<x<2,0<y<1}D = \{(x,y) : 0 < x < 2, 0 < y < 1\}D={(x,y):0<x<2,0<y<1},边界条件 u(0,y)=u(2,y)=0u(0,y) = u(2,y) = 0u(0,y)=u(2,y)=0.

定义 F=ux2+uxuy+uy2−2uf(x,y)F = u_x^2 + u_x u_y + u_y^2 - 2u f(x,y)F=ux2+uxuy+uy22uf(x,y)。欧拉-拉格朗日方程为:
∂F∂u−∂∂x(∂F∂ux)−∂∂y(∂F∂uy)=0 \frac{\partial F}{\partial u} - \frac{\partial}{\partial x} \left( \frac{\partial F}{\partial u_x} \right) - \frac{\partial}{\partial y} \left( \frac{\partial F}{\partial u_y} \right) = 0 uFx(uxF)y(uyF)=0

计算偏导数:

  • ∂F∂u=−2f(x,y)\frac{\partial F}{\partial u} = -2 f(x,y)uF=2f(x,y)
  • ∂F∂ux=2ux+uy\frac{\partial F}{\partial u_x} = 2 u_x + u_yuxF=2ux+uy
  • ∂F∂uy=ux+2uy\frac{\partial F}{\partial u_y} = u_x + 2 u_yuyF=ux+2uy

计算导数:

  • ∂∂x(∂F∂ux)=∂∂x(2ux+uy)=2uxx+uxy\frac{\partial}{\partial x} \left( \frac{\partial F}{\partial u_x} \right) = \frac{\partial}{\partial x} (2 u_x + u_y) = 2 u_{xx} + u_{xy}x(uxF)=x(2ux+uy)=2uxx+uxy
  • ∂∂y(∂F∂uy)=∂∂y(ux+2uy)=uxy+2uyy\frac{\partial}{\partial y} \left( \frac{\partial F}{\partial u_y} \right) = \frac{\partial}{\partial y} (u_x + 2 u_y) = u_{xy} + 2 u_{yy}y(uyF)=y(ux+2uy)=uxy+2uyy

代入欧拉-拉格朗日方程:
−2f(x,y)−(2uxx+uxy)−(uxy+2uyy)=0 -2 f(x,y) - (2 u_{xx} + u_{xy}) - (u_{xy} + 2 u_{yy}) = 0 2f(x,y)(2uxx+uxy)(uxy+2uyy)=0
简化:
−2f(x,y)−2uxx−2uxy−2uyy=0 -2 f(x,y) - 2 u_{xx} - 2 u_{xy} - 2 u_{yy} = 0 2f(x,y)2uxx2uxy2uyy=0
uxx+uxy+uyy=−f(x,y) u_{xx} + u_{xy} + u_{yy} = - f(x,y) uxx+uxy+uyy=f(x,y)

因此,欧拉-拉格朗日方程为:
uxx+uxy+uyy=−f(x,y) u_{xx} + u_{xy} + u_{yy} = - f(x,y) uxx+uxy+uyy=f(x,y)

对于边界条件:

  • x=0x=0x=0x=2x=2x=2 上,有 essential boundary conditions: u=0u = 0u=0
  • y=0y=0y=0y=1y=1y=1 上,无指定条件,故需自然边界条件。

自然边界条件由下式给出:
∂F∂uxnx+∂F∂uyny=0 \frac{\partial F}{\partial u_x} n_x + \frac{\partial F}{\partial u_y} n_y = 0 uxFnx+uyFny=0
其中 nnn 为边界单位外法向量。

计算:

  • ∂F∂ux=2ux+uy\frac{\partial F}{\partial u_x} = 2 u_x + u_yuxF=2ux+uy
  • ∂F∂uy=ux+2uy\frac{\partial F}{\partial u_y} = u_x + 2 u_yuyF=ux+2uy

y=0y=0y=0 上,外法向量为 n=(0,−1)n = (0, -1)n=(0,1):
(2ux+uy)⋅0+(ux+2uy)⋅(−1)=−(ux+2uy)=0 (2 u_x + u_y) \cdot 0 + (u_x + 2 u_y) \cdot (-1) = - (u_x + 2 u_y) = 0 (2ux+uy)0+(ux+2uy)(1)=(ux+2uy)=0
所以 ux+2uy=0u_x + 2 u_y = 0ux+2uy=0.

y=1y=1y=1 上,外法向量为 n=(0,1)n = (0, 1)n=(0,1):
(2ux+uy)⋅0+(ux+2uy)⋅1=ux+2uy=0 (2 u_x + u_y) \cdot 0 + (u_x + 2 u_y) \cdot 1 = u_x + 2 u_y = 0 (2ux+uy)0+(ux+2uy)1=ux+2uy=0
所以 ux+2uy=0u_x + 2 u_y = 0ux+2uy=0.

因此,边界条件为:

  • x=0x=0x=0: u=0u = 0u=0
  • x=2x=2x=2: u=0u = 0u=0
  • y=0y=0y=0: ux+2uy=0u_x + 2 u_y = 0ux+2uy=0
  • y=1y=1y=1: ux+2uy=0u_x + 2 u_y = 0ux+2uy=0

网站公告

今日签到

点亮在社区的每一天
去签到