【Flink】窗口

发布于:2025-09-14 ⋅ 阅读:(15) ⋅ 点赞:(0)

在批处理统计中,我们可以等待一批数据都到齐后,统一处理。但是在实时处理统计中,我们是来一条就得处理一条,那么我们怎么统计最近一段时间内的数据呢?引入“窗口”。
所谓的“窗口”,一般就是划定的一段时间范围,也就是“时间窗”;对在这范围内的数据进行处理,就是所谓的窗口计算。所以窗口和时间往往是分不开的。接下来我们就深入了解一下Flink中的时间语义和窗口的应用。

窗口

窗口的概念

Flink是一种流式计算引擎,主要是来处理无界数据流的,数据源源不断、无穷无尽。想要更加方便高效地处理无界流,一种方式就是将无限数据切割成有限的“数据块”进行处理,这就是所谓的“窗口(Window)。

注意:Flink中窗口并不是静态准备好的,而是动态创建——当有落在这个窗口区间范围的数据达到时,才创建对应的窗口。另外,这里我们认为到达窗口结束时间时,窗口就触发计算并关闭。

窗口的分类

窗口本身是截取有界数据的一种方式,所以窗口一个非常重要的信息其实就是 “怎样截取数据”。换句话说,就是以什么标准来开始和结束数据的截取,我们把它叫作窗口的 “驱动类型”。

(1)时间窗口(Time Window)
时间窗口以时间点来定义窗口的开始(start)和结束(end),所以截取出的就是某一时间段的数据。到达结束时间时,窗口不再收集数据,触发计算输出结果,并将窗口关闭销毁。所以可以说基本思路就是 “定点发车”。

(2)计数窗口(Count Window)
计数窗口基于元素的个数来截取数据,到达固定的个数时就触发计算并关闭窗口。每个窗口截取数据的个数,就是窗口的大小。基本思路是 “人齐发车”。

按照窗口分配数据的规则分类

根据分配数据的规则,窗口的具体实现可以分为4类:滚动窗口(Tumbling Window)、滑动窗口(Sliding Window)、会话窗口(Session Window),以及全局窗口(Global Window)。

滚动窗口(Tumbling Windows)

滚动窗口有固定的大小,是一种对数据进行“均匀切片”的划分方式。窗口之间没有重叠,也不会有间隔,是“首尾相接”的状态。这是最简单的窗口形式,每个数据都会被分配到一个窗口,而且只会属于一个窗口。

滚动窗口可以基于时间定义,也可以基于数据个数定义;需要的参数只有一个,就是窗口的大小(window size)。

比如我们可以定义一个长度为1小时的滚动时间窗口,那么每个小时就会进行一次统计;或者定义一个长度为10的滚动计数窗口,就会每10个数进行一次统计。

滚动窗口应用非常广泛,它可以对每个时间段做聚合统计,很多BI分析指标都可以用它来实现

在这里插入图片描述

滑动窗口(Sliding Windows)

滑动窗口的大小也是固定的。但是窗口之间并不是首尾相接的,而是可以“错开”一定的位置。

定义滑动窗口的参数有两个:除去窗口大小(window size)之外,还有一个“滑动步长”(window slide),它其实就代表了窗口计算的频率。窗口在结束时间触发计算输出结果,那么滑动步长就代表了计算频率。

当滑动步长小于窗口大小时,滑动窗口就会出现重叠,这时数据也可能会被同时分配到多个窗口中。而具体的个数,就由窗口大小和滑动步长的比值(size/slide)来决定。

滚动窗口也可以看作是一种特殊的滑动窗口——窗口大小等于滑动步长(size = slide)。

滑动窗口适合计算结果更新频率非常高的场景

在这里插入图片描述

会话窗口(Session Windows)

会话窗口,是基于“会话”(session)来对数据进行分组的。会话窗口只能基于时间来定义。

会话窗口中,最重要的参数就是会话的超时时间,也就是两个会话窗口之间的最小距离。如果相邻两个数据到来的时间间隔(Gap)小于指定的大小(size),那说明还在保持会话,它们就属于同一个窗口;如果gap大于size,那么新来的数据就应该属于新的会话窗口,而前一个窗口就应该关闭了。

会话窗口的长度不固定,起始和结束时间也是不确定的,各个分区之间窗口没有任何关联。会话窗口之间一定是不会重叠的,而且会留有至少为size的间隔(session gap)。

在一些类似保持会话的场景下,可以使用会话窗口来进行数据的处理统计。

全局窗口(Global Windows)

“全局窗口”,这种窗口全局有效,会把相同key的所有数据都分配到同一个窗口中。这种窗口没有结束的时候,默认是不会做触发计算的。如果希望它能对数据进行计算处理,还需要自定义“触发器”(Trigger)。

全局窗口没有结束的时间点,所以一般在希望做更加灵活的窗口处理时自定义使用。Flink中的计数窗口(Count Window),底层就是用全局窗口实现的。

窗口API概览

窗口函数

定义了窗口分配器,我们只是知道了数据属于哪个窗口,可以将数据收集起来了;至于收集起来到底要做什么,其实还完全没有头绪。所以在窗口分配器之后,必须再接上一个定义窗口如何进行计算的操作,这就是所谓的“窗口函数”(window functions)。

窗口函数定义了要对窗口中收集的数据做的计算操作,根据处理的方式可以分为两类:增量聚合函数和全窗口函数

增量聚合函数

增量聚合:来一条数据,计算一条数据,窗口触发的时候输出计算结果

ReduceFunction
package window;
import env.WaterSensor;
import org.apache.flink.api.common.functions.ReduceFunction;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.datastream.WindowedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import split.WaterSensorMap;
public class WindowReduceDemo {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        SingleOutputStreamOperator<WaterSensor> source = env.socketTextStream("master", 9999).map(new WaterSensorMap());
        KeyedStream<WaterSensor, String> waterSensorStringKeyedStream = source.keyBy(sensor -> sensor.getId());
        WindowedStream<WaterSensor, String, TimeWindow> sensorWS = waterSensorStringKeyedStream.window(TumblingProcessingTimeWindows.of(Time.seconds(20)));
        SingleOutputStreamOperator<WaterSensor> reduce = sensorWS.reduce(new ReduceFunction<WaterSensor>() {
            @Override
            public WaterSensor reduce(WaterSensor value1, WaterSensor value2) throws Exception {
                System.out.println("调用reduce方法,value1=" + value1 + ",value2=" + value2);
                return new WaterSensor(value1.getId(), value2.ts, value1.vc + value2.vc);
            }
        });
        reduce.print();
        env.execute();

    }
}

在这里插入图片描述

在这里插入图片描述

窗口的reduce:
相同key的第一条数据来的时候,不会调用reduce方法
增量聚合:来一条数据,就会计算一次,但是不会输出
在窗口触发的时候,才会输出窗口的最终计算结果

AggregateFunction

ReduceFunction可以解决大多数归约聚合的问题,但是这个接口有一个限制,就是聚合状态的类型、输出结果的类型都必须和输入数据类型一样。
Flink Window API中的aggregate就突破了这个限制,可以定义更加灵活的窗口聚合操作。这个方法需要传入一个AggregateFunction的实现类作为参数。
AggregateFunction可以看作是ReduceFunction的通用版本,这里有三种类型:输入类型(IN)、累加器类型(ACC)和输出类型(OUT)。输入类型IN就是输入流中元素的数据类型;累加器类型ACC则是我们进行聚合的中间状态类型;而输出类型当然就是最终计算结果的类型了。

接口中有四个方法:

  1. createAccumulator():创建一个累加器,这就是为聚合创建了一个初始状态,每个聚合任务只会调用一次。
  2. add():将输入的元素添加到累加器中。
  3. getResult():从累加器中提取聚合的输出结果。
  4. merge():合并两个累加器,并将合并后的状态作为一个累加器返回。

所以可以看到,AggregateFunction的工作原理是:首先调用createAccumulator()为任务初始化一个状态(累加器);而后每来一个数据就调用一次add()方法,对数据进行聚合,得到的结果保存在状态中;等到了窗口需要输出时,再调用getResult()方法得到计算结果。很明显,与ReduceFunction相同,AggregateFunction也是增量式的聚合;而由于输入、中间状态、输出的类型可以不同,使得应用更加灵活方便。

package window;

import env.WaterSensor;
import org.apache.flink.api.common.functions.AggregateFunction;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.datastream.WindowedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import split.WaterSensorMap;

public class WindowAggregateDemo {

    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        SingleOutputStreamOperator<WaterSensor> source = env.socketTextStream("master", 9999).map(new WaterSensorMap());


        KeyedStream<WaterSensor, String> waterSensorStringKeyedStream = source.keyBy(sensor -> sensor.getId());
        WindowedStream<WaterSensor, String, TimeWindow> sensorWS = waterSensorStringKeyedStream.window(TumblingProcessingTimeWindows.of(Time.seconds(10)));


        SingleOutputStreamOperator<String> aggregate = sensorWS.aggregate(new AggregateFunction<WaterSensor, Integer, String>() {

            @Override
            public Integer createAccumulator() {
                System.out.println("初始化累加器");
                return 0;
            }

            @Override
            public Integer add(WaterSensor value, Integer accumulator) {
                System.out.println("调用add方法,value=" +value);
                return accumulator + value.getVc();
            }

            @Override
            public String getResult(Integer accumulator) {
                System.out.println("调用getResult方法");
                return accumulator.toString();
            }

            @Override
            public Integer merge(Integer a, Integer b) {
                System.out.println("调用merge方法");
                return null;
            }
        });


        aggregate.print();

        env.execute();

    }
}


在这里插入图片描述

在这里插入图片描述

属于本窗口的第一条数据来,创建窗口,创建累加器
增量聚合:来一条计算一条,调用add方法
窗口输出时调用一次getResult方法
输入,中间累加器,输出,类型可以不一样,非常灵活

全窗口函数

数据来了不计算,存起来,窗口触发的时候,计算并输出结果
process

有些场景下,我们要做的计算必须基于全部的数据才有效,这时做增量聚合就没什么意义了;另外,输出的结果有可能要包含上下文中的一些信息(比如窗口的起始时间),这是增量聚合函数做不到的。

所以,我们还需要有更丰富的窗口计算方式。窗口操作中的另一大类就是全窗口函数。与增量聚合函数不同,全窗口函数需要先收集窗口中的数据,并在内部缓存起来,等到窗口要输出结果的时候再取出数据进行计算。

在Flink中,全窗口函数也有两种:WindowFunction和ProcessWindowFunction。

窗口函数(WindowFunction)

WindowFunction字面上就是“窗口函数”,它其实是老版本的通用窗口函数接口。我们可以基于WindowedStream调用.apply()方法,传入一个 WindowFunction 的实现类。

stream
    .keyBy(<key selector>)
    .window(<window assigner>)
    .apply(new MyWindowFunction());

这个类中可以获取到包含窗口所有数据的可迭代集合(Iterable),还可以拿到窗口(Window)本身的信息。
不过WindowFunction能提供的上下文信息较少,也没有更高级的功能。事实上,它的作用可以被ProcessWindowFunction全覆盖,所以之后可能会逐渐弃用。

处理窗口函数(ProcessWindowFunction)

ProcessWindowFunction是Window API中最底层的通用窗口函数接口。之所以说它“最底层”,是因为除了可以拿到窗口中的所有数据之外,ProcessWindowFunction还可以获取到一个“上下文对象”(Context)。这个上下文对象非常强大,不仅能够获取窗口信息,还可以访问当前的时间和状态信息。这里的时间就包括了处理时间(processing time)和事件时间水位线(event time watermark)。这就使得ProcessWindowFunction更加灵活、功能更加丰富,其实就是一个增强版的WindowFunction。

package window;

import env.WaterSensor;
import org.apache.commons.lang3.time.DateFormatUtils;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.datastream.WindowedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;
import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;
import split.WaterSensorMap;

public class WindowProcessDemo {

    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        env.setParallelism(1);

        SingleOutputStreamOperator<WaterSensor> source = env.socketTextStream("master", 9999).map(new WaterSensorMap());

        KeyedStream<WaterSensor, String> waterSensorStringKeyedStream = source.keyBy(sensor -> sensor.getId());

        WindowedStream<WaterSensor, String, TimeWindow> sensorWS = waterSensorStringKeyedStream.window(TumblingProcessingTimeWindows.of(Time.seconds(20)));

        SingleOutputStreamOperator<String> process = sensorWS.process(new ProcessWindowFunction<WaterSensor, String, String, TimeWindow>() {
            /**
             *
             * @param s
             * @param context
             * @param elements
             * @param out
             * @throws Exception
             */
            @Override
            public void process(String s, Context context, Iterable<WaterSensor> elements, Collector<String> out) throws Exception {

                long start = context.window().getStart();
                long end = context.window().getEnd();

                String windowStart = DateFormatUtils.format(start, "yyyy-MM-dd HH:mm:ss.SSS");
                String windowEnd = DateFormatUtils.format(end, "yyyy-MM-dd HH:mm:ss.SSS");

                long count = elements.spliterator().estimateSize();

                out.collect("key=" + s + "的窗口[" + windowStart + "," + windowEnd + "]包含" + count + "条数据===>" + elements.toString());


            }
        });


        process.print();

        env.execute();

    }
}



增量聚合和全窗口函数的结合使用

在实际应用中,我们往往希望兼具这两者的优点,把它们结合在一起使用。Flink的Window API就给我们实现了这样的用法。
我们之前在调用WindowedStream的.reduce()和.aggregate()方法时,只是简单地直接传入了一个ReduceFunction或AggregateFunction进行增量聚合。除此之外,其实还可以传入第二个参数:一个全窗口函数,可以是WindowFunction或者ProcessWindowFunction。

package window;
import env.WaterSensor;
import org.apache.commons.lang3.time.DateFormatUtils;
import org.apache.flink.api.common.functions.AggregateFunction;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.datastream.WindowedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;
import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;
import split.WaterSensorMap;

public class WindowAggregateAndProcessDemo {

    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        SingleOutputStreamOperator<WaterSensor> source = env.socketTextStream("master", 9999).map(new WaterSensorMap());

        KeyedStream<WaterSensor, String> waterSensorStringKeyedStream = source.keyBy(sensor -> sensor.getId());

        WindowedStream<WaterSensor, String, TimeWindow> sensorWS = waterSensorStringKeyedStream.window(TumblingProcessingTimeWindows.of(Time.seconds(10)));

        SingleOutputStreamOperator<String> result = sensorWS.aggregate(new MyAgg(), new MyProcess());

        result.print();

        env.execute();

    }

    public static class MyProcess extends ProcessWindowFunction<String,String,String,TimeWindow>{

        @Override
        public void process(String s, Context context, Iterable<String> elements, Collector<String> out) throws Exception {
            long start = context.window().getStart();
            long end = context.window().getEnd();

            String windowStart = DateFormatUtils.format(start, "yyyy-MM-dd HH:mm:ss.SSS");
            String windowEnd = DateFormatUtils.format(end, "yyyy-MM-dd HH:mm:ss.SSS");

            long count = elements.spliterator().estimateSize();

            out.collect("key=" + s + "的窗口[" + windowStart + "," + windowEnd + "]包含" + count + "条数据===>" + elements.toString());


        }
    }

    public static class MyAgg implements AggregateFunction<WaterSensor, Integer, String> {


        @Override
        public Integer createAccumulator() {
            return null;
        }


        @Override
        public Integer add(WaterSensor value, Integer accumulator) {
            return null;
        }


        @Override
        public String getResult(Integer accumulator) {
            return null;
        }


        @Override
        public Integer merge(Integer a, Integer b) {
            return null;
        }
    }
}

这样调用的处理机制是:基于第一个参数(增量聚合函数)来处理窗口数据,每来一个数据就做一次聚合;等到窗口需要触发计算时,则调用第二个参数(全窗口函数)的处理逻辑输出结果。需要注意的是,这里的全窗口函数就不再缓存所有数据了,而是直接将增量聚合函数的结果拿来当作了Iterable类型的输入。

结合两者的优点:

  1. 增量聚合:来一条计算一条,存储中间的计算结果,占用空间少
  2. 全窗口函数:可以通过上下文实现灵活的功能

其他API

对于一个窗口算子而言,窗口分配器和窗口函数是必不可少的。除此之外,Flink还提供了其他一些可选的API,让我们可以更加灵活地控制窗口行为

触发器(Trigger)

触发器主要是用来控制窗口什么时候触发计算。所谓的“触发计算”,本质上就是执行窗口函数,所以可以认为是计算得到结果并输出的过程。
基于WindowedStream调用.trigger()方法,就可以传入一个自定义的窗口触发器(Trigger)。

stream.keyBy(...)
       .window(...)
       .trigger(new MyTrigger())

移除器(Evictor)

移除器主要用来定义移除某些数据的逻辑。基于WindowedStream调用.evictor()方法,就可以传入一个自定义的移除器(Evictor)。Evictor是一个接口,不同的窗口类型都有各自预实现的移除器。


网站公告

今日签到

点亮在社区的每一天
去签到