形心法快速解决一类二重积分问题
问题形式
求解: ∬ D ( m x + n y + l x y ) d x d y , D : ( x − a ) 2 + ( y − b ) 2 ≤ R 2 {\iint\limits_D(mx+ny+lxy)~dxdy},D:(x-a)^2+(y-b)^2\leq R^2 D∬(mx+ny+lxy) dxdy,D:(x−a)2+(y−b)2≤R2
速解
其结果为: ( a m + b n + a b l ) π R 2 (am+bn+abl)\pi R^2 (am+bn+abl)πR2
[证明] 圆的形心为 ( a , b ) (a,b) (a,b)
于是易得: ∬ D x d x d y = a ∬ D d x d y = a π R 2 \iint\limits_Dxdxdy=a\iint\limits_Ddxdy=a\pi R^2 D∬xdxdy=aD∬dxdy=aπR2
同理, ∬ D y d x d y = b ∬ D d x d y = b π R 2 \iint\limits_Dydxdy=b\iint\limits_Ddxdy=b\pi R^2 D∬ydxdy=bD∬dxdy=bπR2
而:
∬ D x y d x d y = ∬ D x ( y − b + b ) d x d y = ∬ D x ( y − b ) d x d y + b ∬ D x d x d y = 0 + a b π R 2 = a b π R 2 \begin{aligned}\iint\limits_Dxydxdy&=\iint\limits_Dx(y-b+b)dxdy\\&=\iint\limits_Dx(y-b)dxdy+b\iint\limits_Dxdxdy\\&=0+ab\pi R^2=ab\pi R^2\end{aligned} D∬xydxdy=D∬x(y−b+b)dxdy=D∬x(y−b)dxdy+bD∬xdxdy=0+abπR2=abπR2
从而,原式:
∬ D ( m x + n y + l x y ) d x d y = ( a m + b n + a b l ) π R 2 {\iint\limits_D(mx+ny+lxy)~dxdy}=(am+bn+abl)\pi R^2 D∬(mx+ny+lxy) dxdy=(am+bn+abl)πR2
[例] 求 ∬ D ( 2 x + 3 y ) d x d y , D : ( x − 1 ) 2 + ( y − 3 ) 2 ≤ 4 {\iint\limits_D(2x+3y)~dxdy},D:(x-1)^2+(y-3)^2\leq 4 D∬(2x+3y) dxdy,D:(x−1)2+(y−3)2≤4
解: m = 2 , n = 3 , l = 0 , a = 1 , b = 3 , R = 4 m=2,n=3,l=0,a=1,b=3,R=4 m=2,n=3,l=0,a=1,b=3,R=4
所以积分结果为: ( 2 × 1 + 3 × 3 + 0 ) π ⋅ 4 = 44 π (2\times 1+3\times 3+0)\pi \cdot4=44\pi (2×1+3×3+0)π⋅4=44π