学习总结
(1)每个优化器都是一个类,一定要进行实例化才能使用,比如:
class Net(nn.Moddule):
···
net = Net()
optim = torch.optim.SGD(net.parameters(), lr=lr)
optim.step()
(2)optimizer:
- 三个属性:
defaults
存储的是优化器的超参数(如学习速率、momentum等);state
:参数的缓存;param_groups
:管理的参数组,是一个list,其中每个元素是一个字典,顺序是params,lr,momentum,dampening,weight_decay,nesterov。 - 其他方法:
zero_grad()
:清空所管理参数的梯度,Pytorch的特性是张量的梯度不自动清零,因此每次反向传播后都需要清空梯度。step()
:执行一步梯度更新,参数更新。add_param_group()
:添加参数组state_dict()
:获取优化器当前状态信息字典
(3)optimizer在一个神经网络的epoch中需要实现下面两个步骤:
梯度置零,梯度更新。
optimizer = torch.optim.SGD(net.parameters(), lr=1e-5)
for epoch in range(EPOCH):
...
optimizer.zero_grad() #梯度置零
loss = ... #计算loss
loss.backward() #BP反向传播
optimizer.step() #梯度更新
文章目录
一、优化器
深度学习的目标是通过不断改变网络参数,使得参数能够对输入做各种非线性变换拟合输出,本质上就是一个函数去寻找最优解,只不过这个最优解是一个矩阵,而如何快速求得这个最优解是深度学习研究的一个重点——以经典的resnet-50为例,它大约有2000万个系数需要进行计算,那么我们如何计算出来这么多的系数,有以下两种方法:
(1)第一种是最直接的暴力穷举一遍参数,这种方法的实施可能性基本为0,堪比愚公移山plus的难度。
(2)为了使求解参数过程更加快,人们提出了第二种办法,即就是是BP+优化器逼近求解。
因此,优化器就是根据网络反向传播的梯度信息来更新网络的参数,以起到降低loss函数计算值,使得模型输出更加接近真实标签。
二、Pytorch的优化器
Pytorch提供了一个优化器的库torch.optim
,在这里面给我们提供了十种优化器。
- torch.optim.ASGD
- torch.optim.Adadelta
- torch.optim.Adagrad
- torch.optim.Adam
- torch.optim.AdamW
- torch.optim.Adamax
- torch.optim.LBFGS
- torch.optim.RMSprop
- torch.optim.Rprop
- torch.optim.SGD
- torch.optim.SparseAdam
而以上这些优化算法均继承于Optimizer
,下面我们先来看下所有优化器的基类Optimizer
。定义如下:
class Optimizer(object):
def __init__(self, params, defaults):
self.defaults = defaults
self.state = defaultdict(dict)
self.param_groups = []
2.1 Optimizer
有三个属性
defaults
:存储的是优化器的超参数,例子如下:
{'lr': 0.1, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'nesterov': False}
state
:参数的缓存,例子如下
defaultdict(<class 'dict'>, {tensor([[ 0.3864, -0.0131],
[-0.1911, -0.4511]], requires_grad=True): {'momentum_buffer': tensor([[0.0052, 0.0052],
[0.0052, 0.0052]])}})
param_groups
:管理的参数组,是一个list,其中每个元素是一个字典,顺序是params,lr,momentum,dampening,weight_decay,nesterov,例子如下
[{'params': [tensor([[-0.1022, -1.6890],
[-1.5116, -1.7846]],
requires_grad=True)],
'lr': 1,
'momentum': 0,
'dampening': 0,
'weight_decay': 0,
'nesterov': False}]
2.2 Optimizer
的其他方法
zero_grad()
:清空所管理参数的梯度,Pytorch的特性是张量的梯度不自动清零,因此每次反向传播后都需要清空梯度。
def zero_grad(self, set_to_none: bool = False):
for group in self.param_groups:
for p in group['params']:
if p.grad is not None: #梯度不为空
if set_to_none:
p.grad = None
else:
if p.grad.grad_fn is not None:
p.grad.detach_()
else:
p.grad.requires_grad_(False)
p.grad.zero_()# 梯度设置为0
step()
:执行一步梯度更新,参数更新
def step(self, closure):
raise NotImplementedError
add_param_group()
:添加参数组
def add_param_group(self, param_group):
assert isinstance(param_group, dict), "param group must be a dict"
# 检查类型是否为tensor
params = param_group['params']
if isinstance(params, torch.Tensor):
param_group['params'] = [params]
elif isinstance(params, set):
raise TypeError('optimizer parameters need to be organized in ordered collections, but '
'the ordering of tensors in sets will change between runs. Please use a list instead.')
else:
param_group['params'] = list(params)
for param in param_group['params']:
if not isinstance(param, torch.Tensor):
raise TypeError("optimizer can only optimize Tensors, "
"but one of the params is " + torch.typename(param))
if not param.is_leaf:
raise ValueError("can't optimize a non-leaf Tensor")
for name, default in self.defaults.items():
if default is required and name not in param_group:
raise ValueError("parameter group didn't specify a value of required optimization parameter " +
name)
else:
param_group.setdefault(name, default)
params = param_group['params']
if len(params) != len(set(params)):
warnings.warn("optimizer contains a parameter group with duplicate parameters; "
"in future, this will cause an error; "
"see github.com/pytorch/pytorch/issues/40967 for more information", stacklevel=3)
# 上面好像都在进行一些类的检测,报Warning和Error
param_set = set()
for group in self.param_groups:
param_set.update(set(group['params']))
if not param_set.isdisjoint(set(param_group['params'])):
raise ValueError("some parameters appear in more than one parameter group")
# 添加参数
self.param_groups.append(param_group)
load_state_dict()
:加载状态参数字典,可以用来进行模型的断点续训练,继续上次的参数进行训练
def load_state_dict(self, state_dict):
r"""Loads the optimizer state.
Arguments:
state_dict (dict): optimizer state. Should be an object returned
from a call to :meth:`state_dict`.
"""
# deepcopy, to be consistent with module API
state_dict = deepcopy(state_dict)
# Validate the state_dict
groups = self.param_groups
saved_groups = state_dict['param_groups']
if len(groups) != len(saved_groups):
raise ValueError("loaded state dict has a different number of "
"parameter groups")
param_lens = (len(g['params']) for g in groups)
saved_lens = (len(g['params']) for g in saved_groups)
if any(p_len != s_len for p_len, s_len in zip(param_lens, saved_lens)):
raise ValueError("loaded state dict contains a parameter group "
"that doesn't match the size of optimizer's group")
# Update the state
id_map = {old_id: p for old_id, p in
zip(chain.from_iterable((g['params'] for g in saved_groups)),
chain.from_iterable((g['params'] for g in groups)))}
def cast(param, value):
r"""Make a deep copy of value, casting all tensors to device of param."""
.....
# Copy state assigned to params (and cast tensors to appropriate types).
# State that is not assigned to params is copied as is (needed for
# backward compatibility).
state = defaultdict(dict)
for k, v in state_dict['state'].items():
if k in id_map:
param = id_map[k]
state[param] = cast(param, v)
else:
state[k] = v
# Update parameter groups, setting their 'params' value
def update_group(group, new_group):
...
param_groups = [
update_group(g, ng) for g, ng in zip(groups, saved_groups)]
self.__setstate__({'state': state, 'param_groups': param_groups})
state_dict()
:获取优化器当前状态信息字典
def state_dict(self):
r"""Returns the state of the optimizer as a :class:`dict`.
It contains two entries:
* state - a dict holding current optimization state. Its content
differs between optimizer classes.
* param_groups - a dict containing all parameter groups
"""
# Save order indices instead of Tensors
param_mappings = {}
start_index = 0
def pack_group(group):
......
param_groups = [pack_group(g) for g in self.param_groups]
# Remap state to use order indices as keys
packed_state = {(param_mappings[id(k)] if isinstance(k, torch.Tensor) else k): v
for k, v in self.state.items()}
return {
'state': packed_state,
'param_groups': param_groups,
}
三、实际操作
# -*- coding: utf-8 -*-
"""
Created on Sat Oct 16 22:46:46 2021
@author: 86493
"""
import torch
import os
# 设置权重,服从 正态分布
weight = torch.randn((2, 2),
requires_grad=True)
# 设置梯度为全1矩阵
weight.grad = torch.ones((2, 2))
# 输出现有的weight和data
print("The data of weight before step:\n{}".format(weight.data))
print('-' * 60)
print("The grad of weight before step:\n{}".format(weight.grad))
print('-' * 60)
# 实例化优化器
optimizer = torch.optim.SGD([weight],
lr = 0.1,
momentum = 0.9)
# 进一步操作
optimizer.step()
# 查看进行一步后的值,梯度
print("The data of weight after step:\n{}".format(weight.data))
print('-' * 60)
print("The grad of weight after step:\n{}".format(weight.grad))
print('-' * 60)
# 权重清零
optimizer.zero_grad()
print("The grad of weight after optimizer.zero_grad():\n{}".format(weight.grad))
print('-' * 60)
# 输出参数
print("optimizer.parmas_group is \n{}".format(optimizer.param_groups))
print('-' * 60)
# 查看参数位置,optimizer和weight的位置一样
# 这里可以参考python是基于值管理的
print("weight in optimizer:{}\nweight in weight:{}\n".
format(id(optimizer.param_groups[0]['params'][0]),
id(weight)))
print('-' * 60)
# 添加参数:weight2
weight2 = torch.randn((3, 3), requires_grad = True)
optimizer.add_param_group({"params": weight2,
'lr': 0.0001,
'nesterov': True})
# 查看现有的参数
print("optimizer.param_groups is \n{}".format(optimizer.param_groups))
print('-' * 60)
# 查看当前状态信息
opt_state_dict = optimizer.state_dict()
print("state_dict before step:\n", opt_state_dict)
print('-' * 60)
# 进行50次step操作
for _ in range(50):
optimizer.step()
# 输出现有状态信息
print("state_dict after step:\n", optimizer.state_dict())
print('-' * 60)
# 保存参数信息
torch.save(optimizer.state_dict(),
os.path.join(r"D:\桌面文件\matrix\code\Torch", "optimizer_state_dict.pkl"))
print("--------------------done----------------------")
# 加载参数信息
state_dict = torch.load(r"D:\桌面文件\matrix\code\Torch\optimizer_state_dict.pkl")
optimizer.load_state_dict(state_dict)
print("load state_dict successfully\n{}".format(state_dict))
print('-' * 60)
# 输出最后属性信息
print("输出最后属性信息:\n")
print("输出属性optimizer.defaults:\n{}".format(optimizer.defaults))
print('-' * 60)
print("输出属性optimizer.state\n{}".format(optimizer.state))
print('-' * 60)
print("输出属性optimizer.param_groups\n{}".format(optimizer.param_groups))
结果为:
The data of weight before step:
tensor([[-0.0947, 1.4217],
[-1.3000, -1.0501]])
------------------------------------------------------------
The grad of weight before step:
tensor([[1., 1.],
[1., 1.]])
------------------------------------------------------------
The data of weight after step:
tensor([[-0.1947, 1.3217],
[-1.4000, -1.1501]])
------------------------------------------------------------
The grad of weight after step:
tensor([[1., 1.],
[1., 1.]])
------------------------------------------------------------
The grad of weight after optimizer.zero_grad():
tensor([[0., 0.],
[0., 0.]])
------------------------------------------------------------
optimizer.parmas_group is
[{'params': [tensor([[-0.1947, 1.3217],
[-1.4000, -1.1501]],
requires_grad=True)],
'lr': 0.1,
'momentum': 0.9,
'dampening': 0,
'weight_decay': 0,
'nesterov': False}]
------------------------------------------------------------
weight in optimizer:1881798878848
weight in weight:1881798878848
------------------------------------------------------------
optimizer.param_groups is
[{'params': [tensor([[-0.1947, 1.3217],
[-1.4000, -1.1501]],
requires_grad=True)],
'lr': 0.1,
'momentum': 0.9,
'dampening': 0,
'weight_decay': 0,
'nesterov': False},
{'params': [tensor([[-1.7869, 2.1294, -0.1307],
[ 0.6809, -0.0193, -0.5704],
[-0.5512, -2.5028, 0.2141]], requires_grad=True)], 'lr': 0.0001, 'nesterov': True, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0}]
------------------------------------------------------------
state_dict before step:
{'state': {0: {'momentum_buffer': tensor([[1., 1.],
[1., 1.]])}}, 'param_groups': [{'lr': 0.1, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'nesterov': False, 'params': [0]}, {'lr': 0.0001, 'nesterov': True, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'params': [1]}]}
------------------------------------------------------------
state_dict after step:
{'state': {0: {'momentum_buffer': tensor([[0.0052, 0.0052],
[0.0052, 0.0052]])}}, 'param_groups': [{'lr': 0.1, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'nesterov': False, 'params': [0]}, {'lr': 0.0001, 'nesterov': True, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'params': [1]}]}
------------------------------------------------------------
------------done-------------
load state_dict successfully
{'state': {0: {'momentum_buffer': tensor([[0.0052, 0.0052],
[0.0052, 0.0052]])}}, 'param_groups': [{'lr': 0.1, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'nesterov': False, 'params': [0]}, {'lr': 0.0001, 'nesterov': True, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'params': [1]}]}
------------------------------------------------------------
输出最后属性信息:
输出属性optimizer.defaults:
{'lr': 0.1, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'nesterov': False}
------------------------------------------------------------
输出属性optimizer.state
defaultdict(<class 'dict'>, {tensor([[-1.0900, 0.4263],
[-2.2953, -2.0455]], requires_grad=True): {'momentum_buffer': tensor([[0.0052, 0.0052],
[0.0052, 0.0052]])}})
------------------------------------------------------------
输出属性optimizer.param_groups
[{'lr': 0.1, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'nesterov': False, 'params': [tensor([[-1.0900, 0.4263],
[-2.2953, -2.0455]], requires_grad=True)]}, {'lr': 0.0001, 'nesterov': True, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'params': [tensor([[-1.7869, 2.1294, -0.1307],
[ 0.6809, -0.0193, -0.5704],
[-0.5512, -2.5028, 0.2141]], requires_grad=True)]}]
四、实验
五、训练与评估
完成了上述设定后就可以加载数据开始训练模型了。之前在DataLoader构建完成后介绍了如何从中读取数据,在训练过程中使用类似的操作即可,区别在于此时要用for循环读取DataLoader中的全部数据。
训练过程:
# -*- coding: utf-8 -*-
"""
Created on Sun Oct 17 12:04:24 2021
@author: 86493
"""
# 训练状态,模型参数应该支持反向传播的修改
model.train()
# 验证/测试状态,不应该修改模型参数
model.eval()
# for循环读取DataLoader中全部数据
for data, label in train_loader:
# 将数据放到GPU上用于后续计算,以.cuda为例
data, label = data.cuda(), label.cuda()
# 开始用当前批次数据做训练时
# 应先将优化器的梯度置零
optimizer.zero_grad()
# 将data送入模型中训练
output = model(data)
# 根据预定义的criterion计算损失函数
loss = criterion(output, label)
# 将loss反向传播回网络
loss.backward()
# 用优化器更新模型参数
optimizer.step()
# 后续还可以计算模型准确率等指标
完整的:
def train(epoch):
model.train()
train_loss = 0
for data, label in train_loader:
# 将数据放到GPU上用于后续计算
data, label = data.cuda(), label.cuda()
# 开始用当前批次数据训练时先清零优化器的梯度
optimizer.zero_grad()
# 将data送入模型中训练
output = model(data)
# 计算损失函数
loss = criterion(label, output)
# 将loss反向传播回网络
loss.backward()
# 用优化器更新模型参数
optimizer.step()
train_loss += loss.item() * data.size(0)
train_loss = train_loss / len(train_loader.dataset)
print('Epoch:{} \tTraining Loss:{:.6f}'.format(epoch, train_loss))
验证/测试的流程基本与训练过程一致,不同点在于:
- 需要预先设置
torch.no_grad
,以及将model调至eval模式 - 不需要将优化器的梯度置零
- 不需要将loss反向回传到网络
- 不需要更新optimizer
验证的完整过程:
def val(epoch):
model.eval()
val_loss = 0
with torch.no_grad():
for data, label in val_loader:
data, label =data.cuda(), label.cuda()
output = model(data)
preds = torch.argmax(output, 1)
loss = criterion(output, label)
val_loss += loss.item() * data.size(0)
running_accu += torch.sum(preds == label.data)
val_loss = val_loss / len(val_loader.dataset)
print('Epoch: {} \tTraining Loss:{:.6f}'.format(epoch, val_loss))
Reference
(1)pytorch官方文档
(2)datawhale notebook
(3)Coding基础概念:.pkl文件是什么?python
(4)pytorch文档阅读(四)如何在GPU上训练
本文含有隐藏内容,请 开通VIP 后查看