图神经网络的可解释性,图神经网络 有向图

发布于:2023-01-22 ⋅ 阅读:(15) ⋅ 点赞:(0) ⋅ 评论:(0)

图神经网络是什么?

什么叫动态神经网络

动态是指带有反馈的那些神经网络,无论是局部反馈还是全局反馈爱发猫 www.aifamao.com。通过反馈,神经网络能将前一时刻的数据保留,使其加入到下一时刻数据的计算,使网络不仅具有动态性而且保留的系统信息也更加完整。

比如elman就是一种动态局部反馈的神经网络。

本人毕设题目是关于神经网络用于图像识别方面的,但是很没有头续~我很不理解神经网络作用的这一机理

我简单说一下,举个例子,比如说我们现在搭建一个识别苹果和橘子的网络模型:我们现在得需要两组数据,一组表示特征值,就是网络的输入(p),另一组是导师信号,告诉网络是橘子还是苹果(网络输出t):我们的样本这样子假设(就是):pt10312142这两组数据是这样子解释的:我们假设通过3个特征来识别一个水果是橘子还是苹果:形状,颜色,味道,第一组形状、颜色、味道分别为:103(当然这些数都是我随便乱编的,这个可以根据实际情况自己定义),有如上特征的水果就是苹果(t为1),而形状、颜色、味道为:214的表示这是一个橘子(t为2)。

好了,我们的网络模型差不多出来了,输入层节点数为3个(形状、颜色,味道),输出层节点为一个(1为苹果2为橘子),隐藏层我们设为一层,节点数先不管,因为这是一个经验值,还有另外的一些参数值可以在matlab里设定,比如训练函数,训练次数之类,我们现在开始训练网络了,首先要初始化权值,输入第一组输入:103,网络会输出一个值,我们假设为4,那么根据导师信号(正确的导师信号为1,表示这是一个苹果)计算误差4-1=3,误差传给bp神经网络,神经网络根据误差调整权值,然后进入第二轮循环,那么我们再次输入一组数据:204(当仍然你可以还输入103,而且如果你一直输入苹果的特征,这样子会让网络只识别苹果而不会识别橘子了,这回明白你的问题所在了吧),同理输出一个值,再次反馈给网络,这就是神经网络训练的基本流程,当然这两组数据肯定不够了,如果数据足够多,我们会让神经网络的权值调整到一个非常理想的状态,是什么状态呢,就是网络再次输出后误差很小,而且小于我们要求的那个误差值。

接下来就要进行仿真预测了t_1=sim(net,p),net就是你建立的那个网络,p是输入数据,由于网络的权值已经确定了,我们这时候就不需要知道t的值了,也就是说不需要知道他是苹果还是橘子了,而t_1就是网络预测的数据,它可能是1或者是2,也有可能是1.3,2.2之类的数(绝大部分都是这种数),那么你就看这个数十接近1还是2了,如果是1.5,我们就认为他是苹果和橘子的杂交,呵呵,开玩笑的,遇到x=2.5,我一般都是舍弃的,表示未知。

总之就是你需要找本资料系统的看下,鉴于我也是做图像处理的,我给你个关键的提醒,用神经网络做图像处理的话必须有好的样本空间,就是你的数据库必须是标准的。

至于网络的机理,训练的方法什么的,找及个例子用matlab仿真下,看看效果,自己琢磨去吧,这里面主要是你隐含层的设置,训练函数选择及其收敛速度以及误差精度就是神经网络的真谛了,想在这么小的空间给你介绍清楚是不可能的,关键是样本,提取的图像特征必须带有相关性,这样设置的各个阈值才有效。

OK,好好学习吧,资料去matlab中文论坛上找,在不行就去baudu文库上,你又不需要都用到,何必看一本书呢!祝你顺利毕业!

什么是BP神经网络?

BP算法的基本思想是:学习过程由信号正向传播与误差的反向回传两个部分组成;正向传播时,输入样本从输入层传入,经各隐层依次逐层处理,传向输出层,若输出层输出与期望不符,则将误差作为调整信号逐层反向回传,对神经元之间的连接权矩阵做出处理,使误差减小。

经反复学习,最终使误差减小到可接受的范围。具体步骤如下:1、从训练集中取出某一样本,把信息输入网络中。2、通过各节点间的连接情况正向逐层处理后,得到神经网络的实际输出。

3、计算网络实际输出与期望输出的误差。4、将误差逐层反向回传至之前各层,并按一定原则将误差信号加载到连接权值上,使整个神经网络的连接权值向误差减小的方向转化。

5、対训练集中每一个输入—输出样本对重复以上步骤,直到整个训练样本集的误差减小到符合要求为止。

人工神经网络的定义,详细说明

人工神经网络(ArtificialNeuralNetworks,ANN),一种模范动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。

这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。

人工神经网络具有自学习和自适应的能力,可以通过预先提供的一批相互对应的输入-输出数据,分析掌握两者之间潜在的规律,最终根据这些规律,用新的输入数据来推算输出结果,这种学习分析的过程被称为“训练”。

(引自《环球科学》2007年第一期《神经语言:老鼠胡须下的秘密》)概念由大量处理单元互联组成的非线性、自适应信息处理系统。

它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。人工神经网络具有四个基本特征:(1)非线性非线性关系是自然界的普遍特性。

大脑的智慧就是一种非线性现象。人工神经元处于激活或抑制二种不同的状态,这种行为在数学上表现为一种非线性关系。具有阈值的神经元构成的网络具有更好的性能,可以提高容错性和存储容量。

(2)非局限性一个神经网络通常由多个神经元广泛连接而成。一个系统的整体行为不仅取决于单个神经元的特征,而且可能主要由单元之间的相互作用、相互连接所决定。通过单元之间的大量连接模拟大脑的非局限性。

联想记忆是非局限性的典型例子。(3)非常定性人工神经网络具有自适应、自组织、自学习能力。神经网络不但处理的信息可以有各种变化,而且在处理信息的同时,非线性动力系统本身也在不断变化。

经常采用迭代过程描写动力系统的演化过程。(4)非凸性一个系统的演化方向,在一定条件下将取决于某个特定的状态函数。例如能量函数,它的极值相应于系统比较稳定的状态。

非凸性是指这种函数有多个极值,故系统具有多个较稳定的平衡态,这将导致系统演化的多样性。人工神经网络中,神经元处理单元可表示不同的对象,例如特征、字母、概念,或者一些有意义的抽象模式。

网络中处理单元的类型分为三类:输入单元、输出单元和隐单元。输入单元接受外部世界的信号与数据;输出单元实现系统处理结果的输出;隐单元是处在输入和输出单元之间,不能由系统外部观察的单元。

神经元间的连接权值反映了单元间的连接强度,信息的表示和处理体现在网络处理单元的连接关系中。

人工神经网络是一种非程序化、适应性、大脑风格的信息处理,其本质是通过网络的变换和动力学行为得到一种并行分布式的信息处理功能,并在不同程度和层次上模仿人脑神经系统的信息处理功能。

它是涉及神经科学、思维科学、人工智能、计算机科学等多个领域的交叉学科。

人工神经网络是并行分布式系统,采用了与传统人工智能和信息处理技术完全不同的机理,克服了传统的基于逻辑符号的人工智能在处理直觉、非结构化信息方面的缺陷,具有自适应、自组织和实时学习的特点。

历史沿革1943年,心理学家W.S.McCulloch和数理逻辑学家W.Pitts建立了神经网络和数学模型,称为MP模型。

他们通过MP模型提出了神经元的形式化数学描述和网络结构方法,证明了单个神经元能执行逻辑功能,从而开创了人工神经网络研究的时代。1949年,心理学家提出了突触联系强度可变的设想。

60年代,人工神经网络的到了进一步发展,更完善的神经网络模型被提出,其中包括感知器和自适应线性元件等。

M.Minsky等仔细分析了以感知器为代表的神经网络系统的功能及局限后,于1969年出版了《Perceptron》一书,指出感知器不能解决高阶谓词问题。

他们的论点极大地影响了神经网络的研究,加之当时串行计算机和人工智能所取得的成就,掩盖了发展新型计算机和人工智能新途径的必要性和迫切性,使人工神经网络的研究处于低潮。

在此期间,一些人工神经网络的研究者仍然致力于这一研究,提出了适应谐振理论(ART网)、自组织映射、认知机网络,同时进行了神经网络数学理论的研究。以上研究为神经网络的研究和发展奠定了基础。

1982年,美国加州工学院物理学家J.J.Hopfield提出了Hopfield神经网格模型,引入了“计算能量”概念,给出了网络稳定性判断。

1984年,他又提出了连续时间Hopfield神经网络模型,为神经计算机的研究做了开拓性的工作,开创了神经网络用于联想记忆和优化计算的新途径,有力地推动了神经网络的研究,1985年,又有学者提出了波耳兹曼模型,在学习中采用统计热力学模拟退火技术,保证整个系统趋于全局稳定点。

1986年进行认知微观结构地研究,提出了并行分布处理的理论。

人工神经网络的研究受到了各个发达国家的重视,美国国会通过决议将1990年1月5日开始的十年定为“脑的十年”,国际研究组织号召它的成员国将“脑的十年”变为全球行为。

在日本的“真实世界计算(RWC)”项目中,人工智能的研究成了一个重要的组成部分。基本内容人工神经网络模型主要考虑网络连接的拓扑结构、神经元的特征、学习规则等。

目前,已有近40种神经网络模型,其中有反传网络、感知器、自组织映射、Hopfield网络、波耳兹曼机、适应谐振理论等。

根据连接的拓扑结构,神经网络模型可以分为:(1)前向网络网络中各个神经元接受前一级的输入,并输出到下一级,网络中没有反馈,可以用一个有向无环路图表示。

这种网络实现信号从输入空间到输出空间的变换,它的信息处理能力来自于简单非线性函数的多次复合。网络结构简单,易于实现。反传网络是一种典型的前向网络。

(2)反馈网络网络内神经元间有反馈,可以用一个无向的完备图表示。这种神经网络的信息处理是状态的变换,可以用动力学系统理论处理。系统的稳定性与联想记忆功能有密切关系。

Hopfield网络、波耳兹曼机均属于这种类型。学习是神经网络研究的一个重要内容,它的适应性是通过学习实现的。根据环境的变化,对权值进行调整,改善系统的行为。

由Hebb提出的Hebb学习规则为神经网络的学习算法奠定了基础。Hebb规则认为学习过程最终发生在神经元之间的突触部位,突触的联系强度随着突触前后神经元的活动而变化。

在此基础上,人们提出了各种学习规则和算法,以适应不同网络模型的需要。

有效的学习算法,使得神经网络能够通过连接权值的调整,构造客观世界的内在表示,形成具有特色的信息处理方法,信息存储和处理体现在网络的连接中。

根据学习环境不同,神经网络的学习方式可分为监督学习和非监督学习。

在监督学习中,将训练样本的数据加到网络输入端,同时将相应的期望输出与网络输出相比较,得到误差信号,以此控制权值连接强度的调整,经多次训练后收敛到一个确定的权值。

当样本情况发生变化时,经学习可以修改权值以适应新的环境。使用监督学习的神经网络模型有反传网络、感知器等。非监督学习时,事先不给定标准样本,直接将网络置于环境之中,学习阶段与工作阶段成为一体。

此时,学习规律的变化服从连接权值的演变方程。非监督学习最简单的例子是Hebb学习规则。竞争学习规则是一个更复杂的非监督学习的例子,它是根据已建立的聚类进行权值调整。

自组织映射、适应谐振理论网络等都是与竞争学习有关的典型模型。

研究神经网络的非线性动力学性质,主要采用动力学系统理论、非线性规划理论和统计理论,来分析神经网络的演化过程和吸引子的性质,探索神经网络的协同行为和集体计算功能,了解神经信息处理机制。

为了探讨神经网络在整体性和模糊性方面处理信息的可能,混沌理论的概念和方法将会发挥作用。混沌是一个相当难以精确定义的数学概念。

一般而言,“混沌”是指由确定性方程描述的动力学系统中表现出的非确定性行为,或称之为确定的随机性。

“确定性”是因为它由内在的原因而不是外来的噪声或干扰所产生,而“随机性”是指其不规则的、不能预测的行为,只可能用统计的方法描述。

混沌动力学系统的主要特征是其状态对初始条件的灵敏依赖性,混沌反映其内在的随机性。

混沌理论是指描述具有混沌行为的非线性动力学系统的基本理论、概念、方法,它把动力学系统的复杂行为理解为其自身与其在同外界进行物质、能量和信息交换过程中内在的有结构的行为,而不是外来的和偶然的行为,混沌状态是一种定态。

混沌动力学系统的定态包括:静止、平稳量、周期性、准同期性和混沌解。混沌轨线是整体上稳定与局部不稳定相结合的结果,称之为奇异吸引子。

一个奇异吸引子有如下一些特征:(1)奇异吸引子是一个吸引子,但它既不是不动点,也不是周期解;(2)奇异吸引子是不可分割的,即不能分为两个以及两个以上的吸引子;(3)它对初始值十分敏感,不同的初始值会导致极不相同的行为。

发展趋势人工神经网络特有的非线性适应性信息处理能力,克服了传统人工智能方法对于直觉,如模式、语音识别、非结构化信息处理方面的缺陷,使之在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。

人工神经网络与其它传统方法相结合,将推动人工智能和信息处理技术不断发展。

近年来,人工神经网络正向模拟人类认知的道路上更加深入发展,与模糊系统、遗传算法、进化机制等结合,形成计算智能,成为人工智能的一个重要方向,将在实际应用中得到发展。

将信息几何应用于人工神经网络的研究,为人工神经网络的理论研究开辟了新的途径。神经计算机的研究发展很快,已有产品进入市场。光电结合的神经计算机为人工神经网络的发展提供了良好条件。

如何通过人工神经网络实现图像识别

人工神经网络(ArtificialNeuralNetworks)(简称ANN)系统从20世纪40年代末诞生至今仅短短半个多世纪,但由于他具有信息的分布存储、并行处理以及自学习能力等优点,已经在信息处理、模式识别、智能控制及系统建模等领域得到越来越广泛的应用。

尤其是基于误差反向传播(ErrorBackPropagation)算法的多层前馈网络(Multiple-LayerFeedforwardNetwork)(简称BP网络),可以以任意精度逼近任意的连续函数,所以广泛应用于非线性建模、函数逼近、模式分类等方面。

目标识别是模式识别领域的一项传统的课题,这是因为目标识别不是一个孤立的问题,而是模式识别领域中大多数课题都会遇到的基本问题,并且在不同的课题中,由于具体的条件不同,解决的方法也不尽相同,因而目标识别的研究仍具有理论和实践意义。

这里讨论的是将要识别的目标物体用成像头(红外或可见光等)摄入后形成的图像信号序列送入计算机,用神经网络识别图像的问题。

一、BP神经网络BP网络是采用Widrow-Hoff学习算法和非线性可微转移函数的多层网络。一个典型的BP网络采用的是梯度下降算法,也就是Widrow-Hoff算法所规定的。

backpropagation就是指的为非线性多层网络计算梯度的方法。一个典型的BP网络结构如图所示。我们将它用向量图表示如下图所示。

其中:对于第k个模式对,输出层单元的j的加权输入为该单元的实际输出为而隐含层单元i的加权输入为该单元的实际输出为函数f为可微分递减函数其算法描述如下:(1)初始化网络及学习参数,如设置网络初始权矩阵、学习因子等。

(2)提供训练模式,训练网络,直到满足学习要求。(3)前向传播过程:对给定训练模式输入,计算网络的输出模式,并与期望模式比较,若有误差,则执行(4);否则,返回(2)。

(4)后向传播过程:a.计算同一层单元的误差;b.修正权值和阈值;c.返回(2)二、BP网络隐层个数的选择对于含有一个隐层的三层BP网络可以实现输入到输出的任何非线性映射。

增加网络隐层数可以降低误差,提高精度,但同时也使网络复杂化,增加网络的训练时间。误差精度的提高也可以通过增加隐层结点数来实现。一般情况下,应优先考虑增加隐含层的结点数。

三、隐含层神经元个数的选择当用神经网络实现网络映射时,隐含层神经元个数直接影响着神经网络的学习能力和归纳能力。

隐含层神经元数目较少时,网络每次学习的时间较短,但有可能因为学习不足导致网络无法记住全部学习内容;隐含层神经元数目较大时,学习能力增强,网络每次学习的时间较长,网络的存储容量随之变大,导致网络对未知输入的归纳能力下降,因为对隐含层神经元个数的选择尚无理论上的指导,一般凭经验确定。

四、神经网络图像识别系统人工神经网络方法实现模式识别,可处理一些环境信息十分复杂,背景知识不清楚,推理规则不明确的问题,允许样品有较大的缺损、畸变,神经网络方法的缺点是其模型在不断丰富完善中,目前能识别的模式类还不够多,神经网络方法允许样品有较大的缺损和畸变,其运行速度快,自适应性能好,具有较高的分辨率。

神经网络的图像识别系统是神经网络模式识别系统的一种,原理是一致的。一般神经网络图像识别系统由预处理,特征提取和神经网络分类器组成。预处理就是将原始数据中的无用信息删除,平滑,二值化和进行幅度归一化等。

神经网络图像识别系统中的特征提取部分不一定存在,这样就分为两大类:①有特征提取部分的:这一类系统实际上是传统方法与神经网络方法技术的结合,这种方法可以充分利用人的经验来获取模式特征以及神经网络分类能力来识别目标图像。

特征提取必须能反应整个图像的特征。但它的抗干扰能力不如第2类。

②无特征提取部分的:省去特征抽取,整副图像直接作为神经网络的输入,这种方式下,系统的神经网络结构的复杂度大大增加了,输入模式维数的增加导致了网络规模的庞大。

此外,神经网络结构需要完全自己消除模式变形的影响。但是网络的抗干扰性能好,识别率高。当BP网用于分类时,首先要选择各类的样本进行训练,每类样本的个数要近似相等。

其原因在于一方面防止训练后网络对样本多的类别响应过于敏感,而对样本数少的类别不敏感。另一方面可以大幅度提高训练速度,避免网络陷入局部最小点。

由于BP网络不具有不变识别的能力,所以要使网络对模式的平移、旋转、伸缩具有不变性,要尽可能选择各种可能情况的样本。

例如要选择不同姿态、不同方位、不同角度、不同背景等有代表性的样本,这样可以保证网络有较高的识别率。

构造神经网络分类器首先要选择适当的网络结构:神经网络分类器的输入就是图像的特征向量;神经网络分类器的输出节点应该是类别数。隐层数要选好,每层神经元数要合适,目前有很多采用一层隐层的网络结构。

然后要选择适当的学习算法,这样才会有很好的识别效果。

在学习阶段应该用大量的样本进行训练学习,通过样本的大量学习对神经网络的各层网络的连接权值进行修正,使其对样本有正确的识别结果,这就像人记数字一样,网络中的神经元就像是人脑细胞,权值的改变就像是人脑细胞的相互作用的改变,神经网络在样本学习中就像人记数字一样,学习样本时的网络权值调整就相当于人记住各个数字的形象,网络权值就是网络记住的内容,网络学习阶段就像人由不认识数字到认识数字反复学习过程是一样的。

神经网络是按整个特征向量的整体来记忆图像的,只要大多数特征符合曾学习过的样本就可识别为同一类别,所以当样本存在较大噪声时神经网络分类器仍可正确识别。

在图像识别阶段,只要将图像的点阵向量作为神经网络分类器的输入,经过网络的计算,分类器的输出就是识别结果。五、仿真实验1、实验对象本实验用MATLAB完成了对神经网络的训练和图像识别模拟。

从实验数据库中选择0~9这十个数字的BMP格式的目标图像。图像大小为16×8像素,每个目标图像分别加10%、20%、30%、40%、50%大小的随机噪声,共产生60个图像样本。

将样本分为两个部分,一部分用于训练,另一部分用于测试。实验中用于训练的样本为40个,用于测试的样本为20个。随机噪声调用函数randn(m,n)产生。

2、网络结构本试验采用三层的BP网络,输入层神经元个数等于样本图像的象素个数16×8个。隐含层选24个神经元,这是在试验中试出的较理想的隐层结点数。

输出层神经元个数就是要识别的模式数目,此例中有10个模式,所以输出层神经元选择10个,10个神经元与10个模式一一对应。

3、基于MATLAB语言的网络训练与仿真建立并初始化网络% ================S1 = 24;% 隐层神经元数目S1 选为24[R,Q] = size(numdata);[S2,Q] = size(targets);F = numdata;P=double(F);net = newff(minmax(P),[S1 S2],{'logsig''logsig'},'traingda','learngdm')这里numdata为训练样本矩阵,大小为128×40,targets为对应的目标输出矩阵,大小为10×40。

newff(PR,[S1S2…SN],{TF1TF2…TFN},BTF,BLF,PF)为MATLAB函数库中建立一个N层前向BP网络的函数,函数的自变量PR表示网络输入矢量取值范围的矩阵[Pminmax];S1~SN为各层神经元的个数;TF1~TFN用于指定各层神经元的传递函数;BTF用于指定网络的训练函数;BLF用于指定权值和阀值的学习函数;PF用于指定网络的性能函数,缺省值为‘mse’。

设置训练参数net.performFcn = 'sse'; %平方和误差性能函数 = 0.1; %平方和误差目标 = 20; %进程显示频率net.trainParam.epochs = 5000;%最大训练步数 = 0.95; %动量常数网络训练net=init(net);%初始化网络[net,tr] = train(net,P,T);%网络训练对训练好的网络进行仿真D=sim(net,P);A = sim(net,B);B为测试样本向量集,128×20的点阵。

D为网络对训练样本的识别结果,A为测试样本的网络识别结果。实验结果表明:网络对训练样本和对测试样本的识别率均为100%。如图为64579五个数字添加50%随机噪声后网络的识别结果。

六、总结从上述的试验中已经可以看出,采用神经网络识别是切实可行的,给出的例子只是简单的数字识别实验,要想在网络模式下识别复杂的目标图像则需要降低网络规模,增加识别能力,原理是一样的。

神经网络具体是什么?

神经网络由大量的神经元相互连接而成。每个神经元接受线性组合的输入后,最开始只是简单的线性加权,后来给每个神经元加上了非线性的激活函数,从而进行非线性变换后输出。

每两个神经元之间的连接代表加权值,称之为权重(weight)。不同的权重和激活函数,则会导致神经网络不同的输出。举个手写识别的例子,给定一个未知数字,让神经网络识别是什么数字。

此时的神经网络的输入由一组被输入图像的像素所激活的输入神经元所定义。在通过非线性激活函数进行非线性变换后,神经元被激活然后被传递到其他神经元。重复这一过程,直到最后一个输出神经元被激活。

从而识别当前数字是什么字。

神经网络的每个神经元如下基本wx+b的形式,其中x1、x2表示输入向量w1、w2为权重,几个输入则意味着有几个权重,即每个输入都被赋予一个权重b为偏置biasg(z)为激活函数a为输出如果只是上面这样一说,估计以前没接触过的十有八九又必定迷糊了。

事实上,上述简单模型可以追溯到20世纪50/60年代的感知器,可以把感知器理解为一个根据不同因素、以及各个因素的重要性程度而做决策的模型。举个例子,这周末北京有一草莓音乐节,那去不去呢?

决定你是否去有二个因素,这二个因素可以对应二个输入,分别用x1、x2表示。此外,这二个因素对做决策的影响程度不一样,各自的影响程度用权重w1、w2表示。

一般来说,音乐节的演唱嘉宾会非常影响你去不去,唱得好的前提下即便没人陪同都可忍受,但如果唱得不好还不如你上台唱呢。所以,我们可以如下表示:x1:是否有喜欢的演唱嘉宾。

x1=1你喜欢这些嘉宾,x1=0你不喜欢这些嘉宾。嘉宾因素的权重w1=7x2:是否有人陪你同去。x2=1有人陪你同去,x2=0没人陪你同去。

是否有人陪同的权重w2=3。这样,咱们的决策模型便建立起来了:g(z)=g(w1x1+w2x2+b),g表示激活函数,这里的b可以理解成为更好达到目标而做调整的偏置项。

一开始为了简单,人们把激活函数定义成一个线性函数,即对于结果做一个线性变化,比如一个简单的线性激活函数是g(z)=z,输出都是输入的线性变换。

后来实际应用中发现,线性激活函数太过局限,于是引入了非线性激活函数。

神经网络到底能干什么?

神经网络利用现有的数据找出输入与输出之间得权值关系(近似),然后利用这样的权值关系进行仿真,例如输入一组数据仿真出输出结果,当然你的输入要和训练时采用的数据集在一个范畴之内。

例如预报天气:温度湿度气压等作为输入天气情况作为输出利用历史得输入输出关系训练出神经网络,然后利用这样的神经网络输入今天的温度湿度气压等得出即将得天气情况当然这样的例子不够精确,但是神经网络得典型应用了。

希望采纳!