算法打卡day37|动态规划篇05| Leetcode1049.最后一块石头的重量II、494.目标和、474.一和零

发布于:2024-04-09 ⋅ 阅读:(149) ⋅ 点赞:(0)

算法题

Leetcode 1049.最后一块石头的重量II

题目链接:1049.最后一块石头的重量II

 大佬视频讲解:最后一块石头的重量II视频讲解

 个人思路

和昨天的分割等和子集有些相像,这道题也是尽量让石头分成重量相同的两堆,相撞之后剩下的石头最小,这样就化解成01背包问题了

解法
动态规划

动规五部曲:

本题物品的重量为stones[i],物品的价值也为stones[i]。

对应着01背包里的物品重量weight[i]和 物品价值value[i]。

1.确定dp数组以及下标的含义

dp[j]表示容量为j的背包,最多可以背最大重量为dp[j]

相对于 01背包,本题中,石头的重量是 stones[i],石头的价值也是 stones[i] ,所以 “最多可以装的价值为 dp[j]” == “最多可以背的重量为dp[j]”

2.确定递推公式

01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

本题则是:dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);

3.dp数组如何初始化

既然 dp[j]中的j表示容量,那么最大容量就是所有石头的重量和

可以把石头遍历一遍,计算出石头总重量 然后除2,得到dp数组的大小。

初始化dp[j]:因为重量都不会是负数,所以dp[j]都初始化为0就可以了,这样在递归公式dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]); 中dp[j]才不会初始值所覆盖

4.确定遍历顺序

如果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历

5.举例推导dp数组

输入:[2,4,1,1],此时target = (2 + 4 + 1 + 1)/2 = 4 ,dp数组状态图如下:

最后dp[target]里是容量为target的背包所能背的最大重量。那么分成两堆石头,一堆石头的总重量是dp[target],另一堆就是sum - dp[target]。

在计算target的时候,target = sum / 2, 因为是向下取整,所以sum - dp[target] 一定是大于等于dp[target]的。那么相撞之后剩下的最小石头重量就是 (sum - dp[target]) - dp[target]。

class Solution {
    public int lastStoneWeightII(int[] stones) {
        int sum = 0;
        for (int i : stones) {
            sum += i;
        }
        int target = sum >> 1;//除2向下取整
        
        int[] dp = new int[target + 1];//初始化dp数组
        for (int i = 0; i < stones.length; i++) {
            for (int j = target; j >= stones[i]; j--) {//采用倒序
                dp[j] = Math.max(dp[j], dp[j - stones[i]] + stones[i]);
            }
        }
        return sum - 2 * dp[target];
    }
}

时间复杂度:O(n^2);(嵌套for循环)

空间复杂度:O( n);(存储一个长度为n+1的dp数组)

二维数组版本

class Solution {
    public int lastStoneWeightII(int[] stones) {
        int sum = 0;
        for (int s : stones) {
            sum += s;
        }

        int target = sum / 2;
        //初始化dp数组
        //dp[i][j]:可以放0-i物品,背包容量为j的情况下背包中的最大价值
        int[][] dp = new int[stones.length][target + 1];

        //dp[i][0]默认初始化为0
        //dp[0][j]取决于stones[0]
        for (int j = stones[0]; j <= target; j++) {
            dp[0][j] = stones[0];
        }


        for (int i = 1; i < stones.length; i++) {
            for (int j = 1; j <= target; j++) {
                if (j >= stones[i]) {
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - stones[i]] + stones[i]);
                } else {
                    dp[i][j] = dp[i - 1][j];
                }
            }
        }
        return (sum - dp[stones.length - 1][target]) - dp[stones.length - 1][target];
    }
}

时间复杂度:O(n^2);(嵌套for循环)

空间复杂度:O( n^2);(dp二维数组)


 Leetcode 494.目标和

题目链接:494.目标和

大佬视频讲解:目标和视频讲解

个人思路

以为可以回溯做出来,结果超时了...

解法
动态规划

动规五部曲:

这题转化为01背包问题的思路:

假设加法的总和为x,那么减法对应的总和就是sum - x。

所以要求的是 x - (sum - x) = target,x = (target + sum) / 2

此时问题就转化为,装满容量为x的背包,有几种方法

这里的x,就是bagSize,也就是后面要求的背包容量。

因为(target + sum) / 2 在计算的过程中向下取整会有影响,比如sum=5时,target=2时就是无解的,同时如果 target的绝对值已经大于sum,那么也是没有方案的。这两种情况可以条件限制,减少遍历时间。

这次和之前遇到的背包问题不一样了,之前都是求容量为j的背包,最多能装多少。本题则是装满有几种方法。其实这就是一个组合问题了。

1.确定dp数组以及下标的含义

dp[j] 表示:填满j(包括j)这么大容积的包,有dp[j]种方法

2.确定递推公式

只要搞到nums[i],凑成dp[j]就有dp[j - nums[i]] 种方法。

例如:dp[j],j 为5,

  • 已经有一个1(nums[i]) 的话,有 dp[4]种方法 凑成 容量为5的背包。
  • 已经有一个2(nums[i]) 的话,有 dp[3]种方法 凑成 容量为5的背包。
  • 已经有一个3(nums[i]) 的话,有 dp[2]中方法 凑成 容量为5的背包
  • 已经有一个4(nums[i]) 的话,有 dp[1]中方法 凑成 容量为5的背包
  • 已经有一个5 (nums[i])的话,有 dp[0]中方法 凑成 容量为5的背包

那么凑整dp[5]的方法就是把 所有的 dp[j - nums[i]] 累加起来。所以求组合类问题的公式,都是类似这种dp[j] += dp[j - nums[i]]

3.dp数组如何初始化

从递推公式可以看出,在初始化的时候dp[0] 一定要初始化为1,因为dp[0]是0的话,递推结果将都是0。

dp[j]其他下标对应的数值应该初始化为0,从递推公式也可以看出,dp[j]要保证是0的初始值,才能正确的由dp[j - nums[i]]推导出来

4.确定遍历顺序

对于01背包问题一维dp的遍历,nums放在外循环,target在内循环,且内循环倒序

5.举例推导dp数组

输入:nums: [1, 1, 1, 1, 1], S: 3

bagSize = (S + sum) / 2 = (3 + 5) / 2 = 4

dp数组状态变化如下:

class Solution {
    public int findTargetSumWays(int[] nums, int target) {
        int sum = 0;
        for (int i = 0; i < nums.length; i++) sum += nums[i];

        //如果target的绝对值大于sum,那么是没有方案的
        if (Math.abs(target) > sum) return 0;
        //如果(target+sum)除以2的余数不为0,也是没有方案的
        if ((target + sum) % 2 == 1) return 0;

        int bagSize = (target + sum) / 2;
        int[] dp = new int[bagSize + 1];//初始化DP数组
        dp[0] = 1;

        for (int i = 0; i < nums.length; i++) {
            for (int j = bagSize; j >= nums[i]; j--) {//倒序
                dp[j] += dp[j - nums[i]];//组合问题递推公式
            }
        }

        return dp[bagSize];
    }
}

时间复杂度:O(n^2);(嵌套for循环)

空间复杂度:O( n);(存储一个长度为n+1的dp数组)

二维数组版本

class Solution {
    public int findTargetSumWays(int[] nums, int target) {
        int sum = 0;
        for(int i = 0; i < nums.length; i++) {
            sum += nums[i];
        }

        // 注意nums[i] >= 0的题目条件,意味着sum也是所有nums[i]的绝对值之和
        // 这里保证了sum + target一定是大于等于零的,也就是left大于等于零(毕竟我们定义left大于right)
        if(sum < Math.abs(target)){
            return 0;
        }

        // 利用二元一次方程组将left用target和sum表示出来(替换掉right组合),详见代码随想录对此题的分析
        // 如果所求的left数组和为小数,则作为整数数组的nums里的任何元素自然是没有办法凑出这个小数的
        if((sum + target) % 2 != 0) {
            return 0;
        }

        int left = (sum + target) / 2;
        
        // dp[i][j]:遍历到数组第i个数时, left为j时的能装满背包的方法总数
        int[][] dp = new int[nums.length][left + 1];

        // 初始化最上行(dp[0][j]),当nums[0] == j时(注意nums[0]和j都一定是大于等于零的,因此不需要判断等于-j时的情况),有唯一一种取法可取到j,dp[0][j]此时等于1
        // 其他情况dp[0][j] = 0
        // java整数数组默认初始值为0
        if (nums[0] <= left) {
            dp[0][nums[0]] = 1;
        }

        // 初始化最左列(dp[i][0])
        // 当从nums数组的索引0到i的部分有n个0时(n > 0),每个0可以取+/-,因此有2的n次方中可以取到j = 0的方案
        // n = 0说明当前遍历到的数组部分没有0全为正数,因此只有一种方案可以取到j = 0(就是所有数都不取)
        int numZeros = 0;
        for(int i = 0; i < nums.length; i++) {
            if(nums[i] == 0) {
                numZeros++;
            }
            dp[i][0] = (int) Math.pow(2, numZeros);

        }

        // 递推公式分析:
        // 当nums[i] > j时,这时候nums[i]一定不能取,所以是dp[i - 1][j]种方案数
        // nums[i] <= j时,num[i]可取可不取,因此方案数是dp[i - 1][j] + dp[i - 1][j - nums[i]]
        // 由递推公式可知,先遍历i或j都可
        for(int i = 1; i < nums.length; i++) {
            for(int j = 1; j <= left; j++) {
                if(nums[i] > j) {
                    dp[i][j] = dp[i - 1][j];
                } else {
                    dp[i][j] = dp[i - 1][j] + dp[i - 1][j - nums[i]];
                }
            }
        }

        return dp[nums.length - 1][left];
        
    }
}

时间复杂度:O(n^2);(嵌套for循环)

空间复杂度:O( n^2);(dp二维数组)


 Leetcode  474.一和零

题目链接:474.一和零

大佬视频讲解:一和零视频讲解

个人思路

没思路...

解法
动态规划

本题中strs 数组里的元素就是物品,每个物品都是一个!而m 和 n相当于是一个背包,两个维度的背包。转换为01背包问题,只不过这个背包有两个维度,一个是m 一个是n,而不同长度的字符串就是不同大小的待装物品

动规五部曲

1.确定dp数组(dp table)以及下标的含义

dp[i][j]:最多有i个0和j个1的strs的最大子集的大小为dp[i][j]

2.确定递推公式

dp[i][j] 可以由前一个strs里的字符串推导出来,strs里的字符串有zeroNum个0,oneNum个1。

dp[i][j] 就可以是 dp[i - zeroNum][j - oneNum] + 1。

然后我们在遍历的过程中,取dp[i][j]的最大值。

所以递推公式:dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);

而01背包的递推公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

对比一下就会发现,字符串的zeroNum和oneNum相当于物品的重量(weight[i]),字符串本身的个数相当于物品的价值(value[i])这就是一个典型的01背包! 只不过物品的重量有了两个维度而已。

3.dp数组如何初始化

因为物品价值不会是负数,dp数组初始为0,保证递推的时候dp[i][j]不会被初始值覆盖。

4.确定遍历顺序

01背包一维数组解法中,一定是外层for循环遍历物品,内层for循环遍历背包容量且从后向前遍历!那么本题也是,物品就是strs里的字符串,背包容量就是题目描述中的m和n

5.举例推导dp数组

以输入:["10","0001","111001","1","0"],m = 3,n = 3为例;最后dp数组的状态如下所示:

class Solution {
    public int findMaxForm(String[] strs, int m, int n) {
        //dp[i][j]表示i个0和j个1时的最大子集
        int[][] dp = new int[m + 1][n + 1];
        int oneNum, zeroNum;
        for (String str : strs) {
            oneNum = 0;
            zeroNum = 0;
            for (char ch : str.toCharArray()) {
                if (ch == '0') {
                    zeroNum++;
                } else {
                    oneNum++;
                }
            }
            //倒序遍历
            for (int i = m; i >= zeroNum; i--) {
                for (int j = n; j >= oneNum; j--) {
                    dp[i][j] = Math.max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);
                }
            }
        }
        return dp[m][n];
    }
}

时间复杂度:O(kmn);(k 为strs的长度)

空间复杂度:O( n^2);(dp二维数组)


 以上是个人的思考反思与总结,若只想根据系列题刷,参考卡哥的网址代码随想录算法官网


网站公告

今日签到

点亮在社区的每一天
去签到