C/C++开发,opencv-ml库学习,支持向量机(SVM)应用

发布于:2024-04-26 ⋅ 阅读:(24) ⋅ 点赞:(0)

目录

一、OpenCV支持向量机(SVM)模块

1.1 openCV的机器学习库

1.2 SVM(支持向量机)模块

1.3 支持向量机(SVM)应用步骤

二、支持向量机(SVM)应用示例

 2.1  训练及验证数据获取

2.2 训练及验证数据加载

2.3 SVM(支持向量机)训练及验证,输出svm模型

2.4 SVM(支持向量机)实时识别应用

三、完整代码编译

3.1 OpenCV+MinGW的MakeFile编译

3.2 OpenCV+vc2015+cmake编译

3.3 执行效果

3.4 附件,main.cpp全文


一、OpenCV支持向量机(SVM)模块

1.1 openCV的机器学习库

        OpenCV-ml库是OpenCV(开放源代码计算机视觉库)中的机器学习模块,常用于分类和回归问题,它是 OpenCV 众多modules下的一个模块。

        该模块提供了一系列常见的统计模型和分类算法,用于进行各种机器学习任务。以下是关于OpenCV-ml库的一些主要功能和特点:

  1. 丰富的算法支持:OpenCV-ml库包含了多种机器学习算法,如支持向量机(SVM)、决策树、Boosting方法、K近邻(KNN)、随机森林等。这些算法可以用于分类、回归、聚类等多种任务。
  2. 易于使用:OpenCV-ml库提供了简洁的API接口,使得开发者能够方便地调用各种机器学习算法。同时,它也支持多种数据格式,方便用户导入和处理数据。
  3. 高效性:OpenCV-ml库经过优化,能够高效地处理大规模数据集,并且具有较快的运算速度。这使得它能够满足实时处理和分析的需求。
  4. 与OpenCV其他模块的集成:OpenCV-ml库与OpenCV的其他模块(如imgproc、features2d等)紧密集成,可以方便地进行图像处理和特征提取,然后将提取的特征用于机器学习任务。
1.2 SVM(支持向量机)模块

        OpenCV 的 SVM(支持向量机)模块是 OpenCV 机器学习库中的一个重要组成部分,它实现了支持向量机算法,用于解决分类和回归问题。支持向量机是一种监督学习模型,广泛应用于各种领域,特别是在图像分类和识别任务中。

        OpenCV 的 SVM 模块提供了灵活的参数设置和多种核函数选择,以适应不同的数据集和问题。以下是一些关于 OpenCV SVM 模块的主要特点:

  1. 多种核函数:支持线性核、多项式核、径向基函数(RBF)核和 Sigmoid 核等,可以根据问题的特性选择合适的核函数。

  2. 参数调整:可以通过调整 SVM 的参数,如 C 值(错误项的惩罚系数)和 gamma 值(对于 RBF、Poly 和 Sigmoid 核函数),来优化模型的性能。

  3. 多类分类支持:通过“一对一”或“一对多”的方式,可以处理多类分类问题。

  4. 概率估计:SVM 可以输出类别的概率估计,这对于某些应用(如置信度评估)非常有用。

  5. 易于使用:OpenCV 提供了简洁的 API,使得 SVM 的训练和测试过程相对简单。

1.3 支持向量机(SVM)应用步骤

        在OpenCV中,使用支持向量机(SVM)进行预测涉及几个步骤。首先,获得训练数据,用于训练一个SVM模型,然后使用该模型对新的、未见过的数据进行预测。

    使用svm模型,包含必要的头文件:

#include <opencv2/opencv.hpp>  
#include <opencv2/ml/ml.hpp>  

   1) 准备训练和测试数据:

    你需要为SVM准备训练和测试数据。这些数据通常是特征向量,存储在cv::Mat对象中。每个特征向量对应一个标签(分类的类别)。
    2)创建和训练SVM模型:
    使用OpenCV的cv::ml::SVM类来创建SVM模型。然后,使用train方法来训练模型。
   3) 进行预测:
    使用训练好的模型对新数据进行预测。这通常涉及将新数据作为输入传递给模型的predict方法。

二、支持向量机(SVM)应用示例

 2.1  训练及验证数据获取

        以下展示如何使用OpenCV的机器学习模块来实现一个基于SVM的手写数字识别器。首先前往网站:MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges,下载MNIST database,用于实现一个SVM的手写数字识别模型训练及验证。

        下载完成后,进行解压操作:

        解压后是idx1-ubyteidx3-ubyte 是两种常见的标签编码格式,主要用于图像分割任务中。它们都是用来表示图像中每个像素所属类别的标签图像(也称为掩码或mask)。

  1. idx1-ubyte:

    • idx: 表示这是一个索引图像。
    • 1: 表示每个像素用一个字节(8位)来表示,且这些值从0开始,通常是连续的整数。
    • ubyte: 表示无符号字节类型,其值的范围是0到255。在idx1-ubyte格式中,通常会将0用作背景或未标记的类别,而其他值则用于表示不同的分割区域或类别。
  2. idx3-ubyte:

    • idx: 同样表示这是一个索引图像。
    • 3: 这里并不是指每个像素用3个字节来表示,而是指每个像素用一个字节来表示,但值的范围是从0到255,通常用来表示256个不同的类别(包括0作为背景或未标记的类别)。注意,虽然名为idx3,但实际上它并不是用3个字节来存储每个像素的值。
    • ubyte: 同样表示无符号字节类型。

        在图像分割任务中,这些标签图像通常与原始RGB图像一起使用。RGB图像用于显示给人类观察者或作为模型的输入,而标签图像则用于训练模型或评估模型的性能。

2.2 训练及验证数据加载

        idx3-ubyte 文件通常与 MNIST 数据集相关联,这是一个大型的手写数字数据库,经常用于机器学习和深度学习中的图像识别任务。MNIST 数据集包含两个文件:train-images-idx3-ubytetrain-labels-idx1-ubyte(用于训练),以及 t10k-images-idx3-ubytet10k-labels-idx1-ubyte(用于测试)。这些文件使用特定的二进制格式存储图像和标签。

        通过两个函数来读取手写图像数据集和手写图像数据对应的标签(每个标签都是一个 0 到 9 之间的整数,表示对应图像中的手写数字)。

//大小端转换
int intReverse(int num)
{
	return (num>>24|((num&0xFF0000)>>8)|((num&0xFF00)<<8)|((num&0xFF)<<24));
}

//读取手写图像数据集
cv::Mat read_mnist_image(const std::string fileName) {
	int magic_number = 0;
	int number_of_images = 0;
	int img_rows = 0;
	int img_cols = 0;

	cv::Mat DataMat;

	std::ifstream file(fileName, std::ios::binary);
	if (file.is_open())
	{
		std::cout << "open images file: "<< fileName << std::endl;

		file.read((char*)&magic_number, sizeof(magic_number));//format
		file.read((char*)&number_of_images, sizeof(number_of_images));//images number
		file.read((char*)&img_rows, sizeof(img_rows));//img rows
		file.read((char*)&img_cols, sizeof(img_cols));//img cols

		magic_number = intReverse(magic_number);
		number_of_images = intReverse(number_of_images);
		img_rows = intReverse(img_rows);
		img_cols = intReverse(img_cols);
		std::cout << "format:" << magic_number
			<< " img num:" << number_of_images
			<< " img row:" << img_rows
			<< " img col:" << img_cols << std::endl;

		std::cout << "read img data" << std::endl;

		DataMat = cv::Mat::zeros(number_of_images, img_rows * img_cols, CV_32FC1);
		unsigned char temp = 0;
		for (int i = 0; i < number_of_images; i++) {
			for (int j = 0; j < img_rows * img_cols; j++) {
				file.read((char*)&temp, sizeof(temp));
				//svm data is CV_32FC1
				float pixel_value = float(temp);
				DataMat.at<float>(i, j) = pixel_value;
			}
		}
		std::cout << "read img data finish!" << std::endl;
	}
	file.close();
	return DataMat;
}
//读取手写标签
cv::Mat read_mnist_label(const std::string fileName) {
	int magic_number;
	int number_of_items;

	cv::Mat LabelMat;

	std::ifstream file(fileName, std::ios::binary);
	if (file.is_open())
	{
		std::cout << "open label file: "<< fileName << std::endl;

		file.read((char*)&magic_number, sizeof(magic_number));
		file.read((char*)&number_of_items, sizeof(number_of_items));
		magic_number = intReverse(magic_number);
		number_of_items = intReverse(number_of_items);

		std::cout << "format:" << magic_number << "  ;label_num:" << number_of_items << std::endl;

		std::cout << "read Label data" << std::endl;
		//data type:CV_32SC1,channel:1
		LabelMat = cv::Mat::zeros(number_of_items, 1, CV_32SC1);
		for (int i = 0; i < number_of_items; i++) {
			unsigned char temp = 0;
			file.read((char*)&temp, sizeof(temp));
			LabelMat.at<unsigned int>(i, 0) = (unsigned int)temp;
		}
		std::cout << "read label data finish!" << std::endl;

	}
	file.close();
	return LabelMat;
}
2.3 SVM(支持向量机)训练及验证,输出svm模型

        1)加载训练图像数据和标签数据,采用cv::Mat存储,图像数据虚归一化;

        2)创建svm模型,设置svm模型的各关联参数,不同参数设置,对应模型精度有较大影响;

        3)加载测试图像数据和标签数据,采用cv::Mat存储,图像数据虚归一化;

        4)采用测试图像数据验证已经训练好的svm模型,获得测试推演结果;

        5)通过测试结果和已有的标签数据进行校对,验证该模型精度。

        6)将训练好的模型保持输出。便于后续用于实时识别应用。

//change path for real paths
std::string trainImgFile = "D:\\workForMy\\OpenCVLib\\opencv_demo\\opencv_ml01\\train-images.idx3-ubyte";
std::string trainLabeFile = "D:\\workForMy\\OpenCVLib\\opencv_demo\\opencv_ml01\\train-labels.idx1-ubyte";
std::string testImgFile = "D:\\workForMy\\OpenCVLib\\opencv_demo\\opencv_ml01\\t10k-images.idx3-ubyte";
std::string testLabeFile = "D:\\workForMy\\OpenCVLib\\opencv_demo\\opencv_ml01\\t10k-labels.idx1-ubyte";

void train_SVM()
{
	//read train images, data type CV_32FC1
	cv::Mat trainingData = read_mnist_image(trainImgFile);
	//images data normalization
	trainingData = trainingData/255.0;
	std::cout << "trainingData.size() = " << trainingData.size() << std::endl; 
	//read train label, data type CV_32SC1
	cv::Mat labelsMat = read_mnist_label(trainLabeFile);
	std::cout << "labelsMat.size() = " << labelsMat.size() << std::endl; 
	std::cout << "trainingData & labelsMat finish!" << std::endl;  

    //create SVM model
    cv::Ptr<cv::ml::SVM> svm = cv::ml::SVM::create();  
	//set svm args,type and KernelTypes
    svm->setType(cv::ml::SVM::C_SVC);  
	svm->setKernel(cv::ml::SVM::POLY);  
	//KernelTypes POLY is need set gamma and degree
	svm->setGamma(3.0);
	svm->setDegree(2.0);
	//Set iteration termination conditions, maxCount is importance
	svm->setTermCriteria(cv::TermCriteria(cv::TermCriteria::EPS | cv::TermCriteria::COUNT, 1000, 1e-8)); 
	std::cout << "create SVM object finish!" << std::endl;  

	std::cout << "trainingData.rows = " << trainingData.rows << std::endl; 
	std::cout << "trainingData.cols = " << trainingData.cols << std::endl; 
	std::cout << "trainingData.type() = " << trainingData.type() << std::endl; 
    // svm model train 
    svm->train(trainingData, cv::ml::ROW_SAMPLE, labelsMat);  
	std::cout << "SVM training finish!" << std::endl; 
    // svm model test  
	cv::Mat testData = read_mnist_image(testImgFile);
	//images data normalization
	testData = testData/255.0;
	std::cout << "testData.rows = " << testData.rows << std::endl; 
	std::cout << "testData.cols = " << testData.cols << std::endl; 
	std::cout << "testData.type() = " << testData.type() << std::endl; 
	//read test label, data type CV_32SC1
	cv::Mat testlabel = read_mnist_label(testLabeFile);
	cv::Mat testResp;
	float response = svm->predict(testData,testResp); 
	// std::cout << "response = " << response << std::endl; 
	testResp.convertTo(testResp,CV_32SC1);
	int map_num = 0;
	for (int i = 0; i <testResp.rows&&testResp.rows==testlabel.rows; i++)
	{
		if (testResp.at<int>(i, 0) == testlabel.at<int>(i, 0))
		{
			map_num++;
		}
		// else{
		// 	std::cout << "testResp.at<int>(i, 0) " << testResp.at<int>(i, 0) << std::endl;
		// 	std::cout << "testlabel.at<int>(i, 0) " << testlabel.at<int>(i, 0) << std::endl;
		// }
	}
	float proportion  = float(map_num) / float(testResp.rows);
	std::cout << "map rate: " << proportion * 100 << "%" << std::endl;
	std::cout << "SVM testing finish!" << std::endl; 
	//save svm model
	svm->save("mnist_svm.xml");
}
2.4 SVM(支持向量机)实时识别应用

        将t10k-images.idx3-ubyte处理成图片数据,用于svm模型调用示例,本文主要是通过一段python代码,将t10k-images.idx3-ubyte另存为一张张手写图片。

import numpy as np 
import os 
from PIL import Image  
from struct import unpack  
  
def read_idx3_ubyte(filename):  
    with open(filename, 'rb') as f:  
        magic, num_images, rows, cols = unpack('>IIII', f.read(16))  
        buf = f.read()  
        data = np.frombuffer(buf, dtype=np.uint8).reshape((num_images, rows, cols))  
    return data  
  
def save_images_as_png(idx3_file, output_dir, prefix='image'):  
    images = read_idx3_ubyte(idx3_file)  
    for i, image in enumerate(images):  
        image_pil = Image.fromarray(image, 'L')  # 'L' 表示灰度模式  
        filename = f"{output_dir}/{prefix}_{i}.png"  
        image_pil.save(filename)  
  
# 使用示例  
# idx3_file = 'train-images.idx3-ubyte'  
# output_dir = 'train-images' 
# if not os.path.exists(output_dir):#检查目录是否存在
# 	os.makedirs(output_dir)#如果不存在则创建目录
# save_images_as_png(idx3_file, output_dir)

idx3_file = 't10k-images.idx3-ubyte'  
output_dir = 't10k-images' 
if not os.path.exists(output_dir):#检查目录是否存在
	os.makedirs(output_dir)#如果不存在则创建目录
save_images_as_png(idx3_file, output_dir)

        在获得图片数据后,将加载这些图片,和上述已保存的svm模型(mnist_svm.xml),实现模型调用验证。

void prediction(const std::string fileName,cv::Ptr<cv::ml::SVM> svm)
{
	//read img 28*28 size
	cv::Mat image = cv::imread(fileName, cv::IMREAD_GRAYSCALE);
	//uchar->float32
	image.convertTo(image, CV_32F);
	//image data normalization
	image = image / 255.0;
	//28*28 -> 1*784
	image = image.reshape(1, 1);

	//预测图片
	float ret = svm->predict(image);
	std::cout << "predict val = "<< ret << std::endl;
}

std::string imgDir = "D:\\workForMy\\OpenCVLib\\opencv_demo\\opencv_ml01\\t10k-images\\";
std::string ImgFiles[5] = {"image_0.png","image_10.png","image_20.png","image_30.png","image_40.png",};
void predictimgs()
{
	//load svm model
	cv::Ptr<cv::ml::SVM> svm = cv::ml::StatModel::load<cv::ml::SVM>("mnist_svm.xml");
	for (size_t i = 0; i < 5; i++)
	{
		prediction(imgDir+ImgFiles[i],svm);
	}
}

三、完整代码编译

3.1 OpenCV+MinGW的MakeFile编译

        本文是采用win系统下,opencv采用MinGW编译的静态库(C/C++开发,win下OpenCV+MinGW编译环境搭建_opencv mingw-CSDN博客),建立makefile:

#/bin/sh
#win32
CX= g++ -DWIN32 
#linux
#CX= g++ -Dlinux 

BIN 		:= ./
TARGET      := opencv_ml01.exe
FLAGS		:= -std=c++11 -static
SRCDIR 		:= ./
#INCLUDES
INCLUDEDIR 	:= -I"../../opencv_MinGW/include" -I"./"
#-I"$(SRCDIR)"
staticDir   := ../../opencv_MinGW/x64/mingw/staticlib/
#LIBDIR		:= $(staticDir)/libopencv_world460.a\
#			   $(staticDir)/libade.a \
#			   $(staticDir)/libIlmImf.a \
#			   $(staticDir)/libquirc.a \
#			   $(staticDir)/libzlib.a \
#			   $(wildcard $(staticDir)/liblib*.a) \
#			   -lgdi32 -lComDlg32 -lOleAut32 -lOle32 -luuid 
#opencv_world放弃前,然后是opencv依赖的第三方库,后面的库是MinGW编译工具的库

LIBDIR 	    := -L $(staticDir) -lopencv_world460 -lade -lIlmImf -lquirc -lzlib \
				-llibjpeg-turbo -llibopenjp2 -llibpng -llibprotobuf -llibtiff -llibwebp \
				-lgdi32 -lComDlg32 -lOleAut32 -lOle32 -luuid 
source		:= $(wildcard $(SRCDIR)/*.cpp) 

$(TARGET) :
	$(CX) $(FLAGS) $(INCLUDEDIR) $(source)  -o $(BIN)/$(TARGET) $(LIBDIR)

clean:
	rm  $(BIN)/$(TARGET)

        编译如下:

3.2 OpenCV+vc2015+cmake编译

        第二种编译,本文采用了vs2015 x64编译了opencv库(C/C++开发,opencv在win下安装及应用_windows安装opencv c++-CSDN博客)。

        建立cmake文件:

# CMake 最低版本号要求
cmake_minimum_required (VERSION 2.8)
# 项目信息
project (opencv_test)
#
message(STATUS "windows compiling...")
add_definitions(-D_PLATFORM_IS_WINDOWS_)
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /MT")
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} /MTd")
set(WIN_OS true)

#
set(EXECUTABLE_OUTPUT_PATH ${PROJECT_SOURCE_DIR}/bin)

# 指定源文件的目录,并将名称保存到变量
SET(source_h
    #
  )
  
SET(source_cpp
    #
	${PROJECT_SOURCE_DIR}/main.cpp
  )
  
#头文件目录
include_directories(${PROJECT_SOURCE_DIR}/../../opencv_VC/include)

set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /wd4819")

add_definitions(
  "-D_CRT_SECURE_NO_WARNINGS"
  "-D_WINSOCK_DEPRECATED_NO_WARNINGS"
  "-DNO_WARN_MBCS_MFC_DEPRECATION"
  "-DWIN32_LEAN_AND_MEAN"
)

link_directories(
	${PROJECT_SOURCE_DIR}/../../opencv_VC/x64/vc14/bin
	${PROJECT_SOURCE_DIR}/../../opencv_VC/x64/vc14/lib
	)

if (CMAKE_BUILD_TYPE STREQUAL "Debug")

set(CMAKE_RUNTIME_OUTPUT_DIRECTORY_DEBUG ${PROJECT_SOURCE_DIR})
# 指定生成目标
add_executable(opencv_testd ${source_h} ${source_cpp})

else(CMAKE_BUILD_TYPE)

set(CMAKE_RUNTIME_OUTPUT_DIRECTORY_RELEASE ${PROJECT_SOURCE_DIR})
# 指定生成目标
add_executable(opencv_test ${source_h} ${source_cpp})

target_link_libraries(opencv_test opencv_world460.lib opencv_img_hash460.lib)

endif (CMAKE_BUILD_TYPE)

# mkdir build_win
# cd build_win
# cmake -G "Visual Studio 14 2015 Win64" -DCMAKE_BUILD_TYPE=Release ..
# msbuild opencv_test.sln /p:Configuration="Release" /p:Platform="x64"

启动vs2015 x64的命令工具(使前面配置的环境变量生效),进入main.cpp文件目录,编译如下:

mkdir build_win
cd build_win
cmake -G "Visual Studio 14 2015 Win64" -DCMAKE_BUILD_TYPE=Release ..
msbuild opencv_test.sln /p:Configuration="Release" /p:Platform="x64"

        编译输出大致如下:

3.3 执行效果

        【1】OpenCV+MinGW+makefile编译程序执行输出,准确率达到98%以上(PS,大家可尝试去调设SVM模型的参数设置,看怎样设置可以获得更高的准确率)

        通过模型调用识别图片全OK(呵呵,毕竟是测试集内的图片数据)

【2】opencv+vc2015+cmake编译程序执行输出,同样能到达效果。

3.4 附件,main.cpp全文
#include <opencv2/opencv.hpp>  
#include <opencv2/ml/ml.hpp>  
#include <opencv2/imgcodecs.hpp>
#include <iostream>  
#include <vector>  
#include <iostream>
#include <fstream>

int intReverse(int num)
{
	return (num>>24|((num&0xFF0000)>>8)|((num&0xFF00)<<8)|((num&0xFF)<<24));
}

std::string intToString(int num)
{
	char buf[32]={0};
	itoa(num,buf,10);
	return std::string(buf);
}


cv::Mat read_mnist_image(const std::string fileName) {
	int magic_number = 0;
	int number_of_images = 0;
	int img_rows = 0;
	int img_cols = 0;

	cv::Mat DataMat;

	std::ifstream file(fileName, std::ios::binary);
	if (file.is_open())
	{
		std::cout << "open images file: "<< fileName << std::endl;

		file.read((char*)&magic_number, sizeof(magic_number));//format
		file.read((char*)&number_of_images, sizeof(number_of_images));//images number
		file.read((char*)&img_rows, sizeof(img_rows));//img rows
		file.read((char*)&img_cols, sizeof(img_cols));//img cols

		magic_number = intReverse(magic_number);
		number_of_images = intReverse(number_of_images);
		img_rows = intReverse(img_rows);
		img_cols = intReverse(img_cols);
		std::cout << "format:" << magic_number
			<< " img num:" << number_of_images
			<< " img row:" << img_rows
			<< " img col:" << img_cols << std::endl;

		std::cout << "read img data" << std::endl;

		DataMat = cv::Mat::zeros(number_of_images, img_rows * img_cols, CV_32FC1);
		unsigned char temp = 0;
		for (int i = 0; i < number_of_images; i++) {
			for (int j = 0; j < img_rows * img_cols; j++) {
				file.read((char*)&temp, sizeof(temp));
				//svm data is CV_32FC1
				float pixel_value = float(temp);
				DataMat.at<float>(i, j) = pixel_value;
			}
		}
		std::cout << "read img data finish!" << std::endl;
	}
	file.close();
	return DataMat;
}

cv::Mat read_mnist_label(const std::string fileName) {
	int magic_number;
	int number_of_items;

	cv::Mat LabelMat;

	std::ifstream file(fileName, std::ios::binary);
	if (file.is_open())
	{
		std::cout << "open label file: "<< fileName << std::endl;

		file.read((char*)&magic_number, sizeof(magic_number));
		file.read((char*)&number_of_items, sizeof(number_of_items));
		magic_number = intReverse(magic_number);
		number_of_items = intReverse(number_of_items);

		std::cout << "format:" << magic_number << "  ;label_num:" << number_of_items << std::endl;

		std::cout << "read Label data" << std::endl;
		//data type:CV_32SC1,channel:1
		LabelMat = cv::Mat::zeros(number_of_items, 1, CV_32SC1);
		for (int i = 0; i < number_of_items; i++) {
			unsigned char temp = 0;
			file.read((char*)&temp, sizeof(temp));
			LabelMat.at<unsigned int>(i, 0) = (unsigned int)temp;
		}
		std::cout << "read label data finish!" << std::endl;

	}
	file.close();
	return LabelMat;
}

//change path for real paths
std::string trainImgFile = "D:\\workForMy\\OpenCVLib\\opencv_demo\\opencv_ml01\\train-images.idx3-ubyte";
std::string trainLabeFile = "D:\\workForMy\\OpenCVLib\\opencv_demo\\opencv_ml01\\train-labels.idx1-ubyte";
std::string testImgFile = "D:\\workForMy\\OpenCVLib\\opencv_demo\\opencv_ml01\\t10k-images.idx3-ubyte";
std::string testLabeFile = "D:\\workForMy\\OpenCVLib\\opencv_demo\\opencv_ml01\\t10k-labels.idx1-ubyte";

void train_SVM()
{
	//read train images, data type CV_32FC1
	cv::Mat trainingData = read_mnist_image(trainImgFile);
	//images data normalization
	trainingData = trainingData/255.0;
	std::cout << "trainingData.size() = " << trainingData.size() << std::endl; 
	//read train label, data type CV_32SC1
	cv::Mat labelsMat = read_mnist_label(trainLabeFile);
	std::cout << "labelsMat.size() = " << labelsMat.size() << std::endl; 
	std::cout << "trainingData & labelsMat finish!" << std::endl;  

    //create SVM model
    cv::Ptr<cv::ml::SVM> svm = cv::ml::SVM::create();  
	//set svm args,type and KernelTypes
    svm->setType(cv::ml::SVM::C_SVC);  
	svm->setKernel(cv::ml::SVM::POLY);  
	//KernelTypes POLY is need set gamma and degree
	svm->setGamma(3.0);
	svm->setDegree(2.0);
	//Set iteration termination conditions, maxCount is importance
	svm->setTermCriteria(cv::TermCriteria(cv::TermCriteria::EPS | cv::TermCriteria::COUNT, 1000, 1e-8)); 
	std::cout << "create SVM object finish!" << std::endl;  

	std::cout << "trainingData.rows = " << trainingData.rows << std::endl; 
	std::cout << "trainingData.cols = " << trainingData.cols << std::endl; 
	std::cout << "trainingData.type() = " << trainingData.type() << std::endl; 
    // svm model train 
    svm->train(trainingData, cv::ml::ROW_SAMPLE, labelsMat);  
	std::cout << "SVM training finish!" << std::endl; 
    // svm model test  
	cv::Mat testData = read_mnist_image(testImgFile);
	//images data normalization
	testData = testData/255.0;
	std::cout << "testData.rows = " << testData.rows << std::endl; 
	std::cout << "testData.cols = " << testData.cols << std::endl; 
	std::cout << "testData.type() = " << testData.type() << std::endl; 
	//read test label, data type CV_32SC1
	cv::Mat testlabel = read_mnist_label(testLabeFile);
	cv::Mat testResp;
	float response = svm->predict(testData,testResp); 
	// std::cout << "response = " << response << std::endl; 
	testResp.convertTo(testResp,CV_32SC1);
	int map_num = 0;
	for (int i = 0; i <testResp.rows&&testResp.rows==testlabel.rows; i++)
	{
		if (testResp.at<int>(i, 0) == testlabel.at<int>(i, 0))
		{
			map_num++;
		}
		// else{
		// 	std::cout << "testResp.at<int>(i, 0) " << testResp.at<int>(i, 0) << std::endl;
		// 	std::cout << "testlabel.at<int>(i, 0) " << testlabel.at<int>(i, 0) << std::endl;
		// }
	}
	float proportion  = float(map_num) / float(testResp.rows);
	std::cout << "map rate: " << proportion * 100 << "%" << std::endl;
	std::cout << "SVM testing finish!" << std::endl; 
	//save svm model
	svm->save("mnist_svm.xml");
}


void prediction(const std::string fileName,cv::Ptr<cv::ml::SVM> svm)
{
	//read img 28*28 size
	cv::Mat image = cv::imread(fileName, cv::IMREAD_GRAYSCALE);
	//uchar->float32
	image.convertTo(image, CV_32F);
	//image data normalization
	image = image / 255.0;
	//28*28 -> 1*784
	image = image.reshape(1, 1);

	//预测图片
	float ret = svm->predict(image);
	std::cout << "predict val = "<< ret << std::endl;
}

std::string imgDir = "D:\\workForMy\\OpenCVLib\\opencv_demo\\opencv_ml01\\t10k-images\\";
std::string ImgFiles[5] = {"image_0.png","image_10.png","image_20.png","image_30.png","image_40.png",};
void predictimgs()
{
	//load svm model
	cv::Ptr<cv::ml::SVM> svm = cv::ml::StatModel::load<cv::ml::SVM>("mnist_svm.xml");
	for (size_t i = 0; i < 5; i++)
	{
		prediction(imgDir+ImgFiles[i],svm);
	}
}

int main()  
{  
	train_SVM();
	predictimgs();	
    return 0;  
}