Python 语音识别系列-实战学习-DFCNN_Transformer的实现

发布于:2024-05-07 ⋅ 阅读:(21) ⋅ 点赞:(0)

前言

此博客是基于华为云中的DFCNN_Transformer的教程进行的学习和实践。本文将介绍一个结合了深度全卷积网络(DFCNN)和Transformer的模型——DFCNN-Transformer,旨在提高中文语音识别的准确性和效率。

注意
该代码主要改进之处为将原先的TensorFlow-1.13.1版本的代码改进为TensorFlow-2.0+版本。以方便大家进行代码的实践。
所需数据已放在博客中,可自行下载。

1.定义声学模型和获取数据的函数

首先加载需要的python库

import numpy as np
import scipy.io.wavfile as wav
import matplotlib.pyplot as plt
import keras
import tensorflow as tf
tf.compat.v1.disable_eager_execution()
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
from keras.layers import Input, Conv2D, BatchNormalization, MaxPooling2D
from keras.layers import Reshape, Dense, Dropout, Lambda
from keras.optimizers import Adam
from keras import backend as K
from keras.models import Model
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import warnings
warnings.filterwarnings("ignore")

定义声学模型

定义层函数:

  • conv2d(size): 定义一个带有ReLU激活函数的二维卷积层,使用正态分布初始化权重。
  • norm(x): 定义一个批量归一化层,并将其应用于输入x。
  • maxpool(x): 定义一个最大池化层,并将其应用于输入x。
  • dense(units, activation=“relu”): 定义一个全连接(Dense)层,带有ReLU(或指定)激活函数。
  • cnn_cell(size, x, pool=True): 这是一个自定义的卷积单元,包含两个卷积层和一个可选的最大池化层。

CTC损失函数:

  • ctc_lambda(args): 这是一个用于计算CTC(Connectionist Temporal Classification)损失的lambda函数。CTC损失通常用于处理序列到序列的映射问题,特别是在语音识别任务中。

声学模型类:

  • acoustic_model(vocab_size):这是一个定义声学模型的类。在初始化时,它接受一个词汇表大小vocab_size作为参数,并初始化了一些模型参数和层。

在_model_init方法中:

  1. 首先定义了模型的输入层,然后连续应用了几个cnn_cell定义的卷积单元。
  2. 注意到在最后的两个cnn_cell调用中,设置了pool=False来避免最大池化。
  3. 通过Reshape层将特征图展平,并通过两个带有dropout的Dense层进一步处理。
  4. 最后,定义了一个输出层,使用softmax激活函数来生成词汇表中每个单词的概率分布。

_ctc_init 方法:
定义了三个额外的输入层:labels、input_length和label_length,这些都是CTC损失函数所需要的。然后,使用Lambda层来应用之前定义的ctc_lambda函数,计算CTC损失。最后,创建了一个新的模型self.ctc_model,该模型将这四个输入(标签、原始输入、输入长度和标签长度)作为输入,并将CTC损失作为输出。

opt_init 方法:
创建了一个Adam优化器实例,并使用它来编译self.ctc_model。注意,在定义损失函数时,使用了一个lambda函数,该函数简单地返回了由Lambda层计算出的CTC损失。这是因为在Lambda层中,已经指定了如何计算损失,所以在这里只需要将输出作为损失即可。

#定义卷积层
def conv2d(size):
    return Conv2D(size, (3,3), use_bias=True, activation='relu',
        padding='same', kernel_initializer='he_normal')

#定义BN层
def norm(x):
    return BatchNormalization(axis=-1)(x)

#定义最大池化层
def maxpool(x):
    return MaxPooling2D(pool_size=(2,2), strides=None, padding="valid")(x)

#定义dense层
def dense(units, activation="relu"):
    return Dense(units, activation=activation, use_bias=True,
        kernel_initializer='he_normal')

#两个卷积层加一个最大池化层的组合
def cnn_cell(size, x, pool=True):
    x = norm(conv2d(size)(x))
    x = norm(conv2d(size)(x))
    if pool:
        x = maxpool(x)
    return x

#CTC损失函数
def ctc_lambda(args):
    labels, y_pred, input_length, label_length = args
    y_pred = y_pred[:, :, :]
    return K.ctc_batch_cost(labels, y_pred, input_length, label_length)

#组合声学模型
class acoustic_model():
    def __init__(self,vocab_size):
        self.vocab_size = vocab_size
        self.learning_rate = 0.0008
        self.is_training = True
        self._model_init()
        if self.is_training:
            self._ctc_init()
            self.opt_init()

    def _model_init(self):
        self.inputs = Input(name='the_inputs', shape=(None, 200, 1))
        self.h1 = cnn_cell(32, self.inputs)
        self.h2 = cnn_cell(64, self.h1)
        self.h3 = cnn_cell(128, self.h2)
        self.h4 = cnn_cell(128, self.h3, pool=False)
        self.h5 = cnn_cell(128, self.h4, pool=False)
        # 200 / 8 * 128 = 3200
        self.h6 = Reshape((-1, 3200))(self.h5)
        self.h6 = Dropout(0.2)(self.h6)
        self.h7 = dense(256)(self.h6)
        self.h7 = Dropout(0.2)(self.h7)
        self.outputs = dense(self.vocab_size, activation='softmax')(self.h7)
        self.model = Model(inputs=self.inputs, outputs=self.outputs)

    def _ctc_init(self):
        self.labels = Input(name='the_labels', shape=[None], dtype='float32')
        self.input_length = Input(name='input_length', shape=[1], dtype='int64')
        self.label_length = Input(name='label_length', shape=[1], dtype='int64')
        self.loss_out = Lambda(ctc_lambda, output_shape=(1,), name='ctc')\
            ([self.labels, self.outputs, self.input_length, self.label_length])
        self.ctc_model = Model(inputs=[self.labels, self.inputs,
            self.input_length, self.label_length], outputs=self.loss_out)

    def opt_init(self):
        opt = tf.keras.optimizers.legacy.Adam(learning_rate = self.learning_rate, beta_1 = 0.9, beta_2 = 0.999, decay = 0.01, epsilon = 10e-8)
        self.ctc_model.compile(loss={'ctc': lambda y_true, output: output}, optimizer=opt)

acoustic = acoustic_model(vocab_size=50)

获取数据
compute_fbank 函数:该函数旨在从WAV文件中提取特征。

get_data 类:该类用于管理数据集,包括WAV文件列表、对应的拼音和汉字标签。

from scipy.fftpack import fft

# 获取信号的时频图
def compute_fbank(file):
    x=np.linspace(0, 400 - 1, 400, dtype = np.int64)
    w = 0.54 - 0.46 * np.cos(2 * np.pi * (x) / (400 - 1) ) 
    fs, wavsignal = wav.read(file)
    time_window = 25 
    window_length = fs / 1000 * time_window 
    wav_arr = np.array(wavsignal)
    wav_length = len(wavsignal)
    range0_end = int(len(wavsignal)/fs*1000 - time_window) // 10 
    data_input = np.zeros((range0_end, 200), dtype = np.float) 
    data_line = np.zeros((1, 400), dtype = np.float)
    for i in range(0, range0_end):
        p_start = i * 160
        p_end = p_start + 400
        data_line = wav_arr[p_start:p_end]    
        data_line = data_line * w 
        data_line = np.abs(fft(data_line))
        data_input[i]=data_line[0:200] 
    data_input = np.log(data_input + 1)
    return data_input


class get_data():
    def __init__(self):
        self.data_path = './speech_recognition/data/'     
        self.data_length = 20
        self.batch_size = 1
        self.source_init()

    def source_init(self):
        self.wav_lst = []
        self.pin_lst = []
        self.han_lst = []
        with open('speech_recognition/data.txt', 'r', encoding='utf8') as f:
            data = f.readlines()
        for line in data:
            wav_file, pin, han = line.split('\t')
            self.wav_lst.append(wav_file)
            self.pin_lst.append(pin.split(' '))
            self.han_lst.append(han.strip('\n'))
        if self.data_length:
            self.wav_lst = self.wav_lst[:self.data_length]
            self.pin_lst = self.pin_lst[:self.data_length]
            self.han_lst = self.han_lst[:self.data_length]
        self.acoustic_vocab = self.acoustic_model_vocab(self.pin_lst)
        self.pin_vocab = self.language_model_pin_vocab(self.pin_lst)
        self.han_vocab = self.language_model_han_vocab(self.han_lst)

    def get_acoustic_model_batch(self):
        _list = [i for i in range(len(self.wav_lst))]
        while 1:
            for i in range(len(self.wav_lst) // self.batch_size):
                wav_data_lst = []
                label_data_lst = []
                begin = i * self.batch_size
                end = begin + self.batch_size
                sub_list = _list[begin:end]
                for index in sub_list:
                    fbank = compute_fbank(self.data_path + self.wav_lst[index])
                    pad_fbank = np.zeros((fbank.shape[0] // 8 * 8 + 8, fbank.shape[1]))
                    pad_fbank[:fbank.shape[0], :] = fbank
                    label = self.pin2id(self.pin_lst[index], self.acoustic_vocab)
                    label_ctc_len = self.ctc_len(label)
                    if pad_fbank.shape[0] // 8 >= label_ctc_len:
                        wav_data_lst.append(pad_fbank)
                        label_data_lst.append(label)
                pad_wav_data, input_length = self.wav_padding(wav_data_lst)
                pad_label_data, label_length = self.label_padding(label_data_lst)
                inputs = {'the_inputs': pad_wav_data,
                          'the_labels': pad_label_data,
                          'input_length': input_length,
                          'label_length': label_length,
                          }
                outputs = {'ctc': np.zeros(pad_wav_data.shape[0], )}
                yield inputs, outputs

    def get_language_model_batch(self):
        batch_num = len(self.pin_lst) // self.batch_size
        for k in range(batch_num):
            begin = k * self.batch_size
            end = begin + self.batch_size
            input_batch = self.pin_lst[begin:end]
            label_batch = self.han_lst[begin:end]
            max_len = max([len(line) for line in input_batch])
            input_batch = np.array(
                [self.pin2id(line, self.pin_vocab) + [0] * (max_len - len(line)) for line in input_batch])
            label_batch = np.array(
                [self.han2id(line, self.han_vocab) + [0] * (max_len - len(line)) for line in label_batch])
            yield input_batch, label_batch

    def pin2id(self, line, vocab):
        return [vocab.index(pin) for pin in line]

    def han2id(self, line, vocab):
        return [vocab.index(han) for han in line]

    def wav_padding(self, wav_data_lst):
        wav_lens = [len(data) for data in wav_data_lst]
        wav_max_len = max(wav_lens)
        wav_lens = np.array([leng // 8 for leng in wav_lens])
        new_wav_data_lst = np.zeros((len(wav_data_lst), wav_max_len, 200, 1))
        for i in range(len(wav_data_lst)):
            new_wav_data_lst[i, :wav_data_lst[i].shape[0], :, 0] = wav_data_lst[i]
        return new_wav_data_lst, wav_lens

    def label_padding(self, label_data_lst):
        label_lens = np.array([len(label) for label in label_data_lst])
        max_label_len = max(label_lens)
        new_label_data_lst = np.zeros((len(label_data_lst), max_label_len))
        for i in range(len(label_data_lst)):
            new_label_data_lst[i][:len(label_data_lst[i])] = label_data_lst[i]
        return new_label_data_lst, label_lens

    def acoustic_model_vocab(self, data):
        vocab = []
        for line in data:
            line = line
            for pin in line:
                if pin not in vocab:
                    vocab.append(pin)
        vocab.append('_')
        return vocab

    def language_model_pin_vocab(self, data):
        vocab = ['<PAD>']
        for line in data:
            for pin in line:
                if pin not in vocab:
                    vocab.append(pin)
        return vocab

    def language_model_han_vocab(self, data):
        vocab = ['<PAD>']
        for line in data:
            line = ''.join(line.split(' '))
            for han in line:
                if han not in vocab:
                    vocab.append(han)
        return vocab

    def ctc_len(self, label):
        add_len = 0
        label_len = len(label)
        for i in range(label_len - 1):
            if label[i] == label[i + 1]:
                add_len += 1
        return label_len + add_len

2.训练声学模型

准备训练参数及数据
为了本示例演示效果,参数batch_size在此仅设置为1,参数data_length在此仅设置为20。
若进行完整训练,则应注释data_args.data_length = 20,并调高batch_size。

train_data = get_data()
vocab_size = len(train_data.acoustic_vocab)

acoustic = acoustic_model(vocab_size)

if os.path.exists('/speech_recognition/acoustic_model/model.h5'):
    print('加载声学模型')
    acoustic.ctc_model.load_weights('./speech_recognition/acoustic_model/model.h5')
epochs = 20
batch_num = len(train_data.wav_lst) // train_data.batch_size

print("开始训练!")
for k in range(epochs):
    print('第', k+1, '个epoch')
    batch = train_data.get_acoustic_model_batch()
    acoustic.ctc_model.fit_generator(batch, steps_per_epoch=batch_num, epochs=1)

print("\n训练完成,保存模型")
acoustic.ctc_model.save_weights('./speech_recognition/acoustic_model/model.h5')

3.定义语言模型

使用 Transformer 结构进行语言模型的建模。

normalize 函数:实现了批量归一化(Batch Normalization),用于在训练过程中标准化神经网络的输入,使其具有零均值和单位方差。它接受输入张量inputs,并返回归一化后的输出。

embedding 函数:定义了一个词嵌入层,用于将输入的整数ID(通常代表单词或符号)转换为固定大小的密集向量(词嵌入)。

def normalize(inputs,
              epsilon = 1e-8,
              scope="ln",
              reuse=None):
    with tf.compat.v1.variable_scope(scope, reuse=reuse):
        inputs_shape = inputs.get_shape()
        params_shape = inputs_shape[-1:]

        mean, variance = tf.compat.v1.nn.moments(inputs, [-1], keep_dims=True)
        beta= tf.Variable(tf.zeros(params_shape))
        gamma = tf.Variable(tf.ones(params_shape))
        normalized = (inputs - mean) / ( (variance + epsilon) ** (.5) )
        outputs = gamma * normalized + beta

    return outputs
def embedding(inputs,
              vocab_size,
              num_units,
              zero_pad=True,
              scale=True,
              scope="embedding",
              reuse=None):
    with tf.compat.v1.variable_scope(scope, reuse=reuse):
        lookup_table = tf.compat.v1.get_variable('lookup_table',
                                       dtype=tf.float32,
                                       shape=[vocab_size, num_units],
                                       initializer=tf.compat.v1.keras.initializers.glorot_normal)
        if zero_pad:
            lookup_table = tf.concat((tf.zeros(shape=[1, num_units]),
                                      lookup_table[1:, :]), 0)
        outputs = tf.nn.embedding_lookup(lookup_table, inputs)

        if scale:
            outputs = outputs * (num_units ** 0.5)

    return outputs
def multihead_attention(emb,
                        queries,
                        keys,
                        num_units=None,
                        num_heads=8,
                        dropout_rate=0,
                        is_training=True,
                        causality=False,
                        scope="multihead_attention",
                        reuse=None):
    with tf.compat.v1.variable_scope(scope, reuse=reuse):
        if num_units is None:
            num_units = queries.get_shape().as_list[-1]

        Q = tf.compat.v1.layers.dense(queries, num_units, activation=tf.nn.relu)  # (N, T_q, C)
        K = tf.compat.v1.layers.dense(keys, num_units, activation=tf.nn.relu)  # (N, T_k, C)
        V = tf.compat.v1.layers.dense(keys, num_units, activation=tf.nn.relu)  # (N, T_k, C)

        Q_ = tf.concat(tf.split(Q, num_heads, axis=2), axis=0)  # (h*N, T_q, C/h)
        K_ = tf.concat(tf.split(K, num_heads, axis=2), axis=0)  # (h*N, T_k, C/h)
        V_ = tf.concat(tf.split(V, num_heads, axis=2), axis=0)  # (h*N, T_k, C/h)

        outputs = tf.matmul(Q_, tf.transpose(K_, [0, 2, 1]))  # (h*N, T_q, T_k)

        outputs = outputs / (K_.get_shape().as_list()[-1] ** 0.5)

        key_masks = tf.sign(tf.abs(tf.reduce_sum(emb, axis=-1)))  # (N, T_k)
        key_masks = tf.tile(key_masks, [num_heads, 1])  # (h*N, T_k)
        key_masks = tf.tile(tf.expand_dims(key_masks, 1), [1, tf.shape(queries)[1], 1])  # (h*N, T_q, T_k)

        paddings = tf.ones_like(outputs) * (-2 ** 32 + 1)
        outputs = tf.where(tf.equal(key_masks, 0), paddings, outputs)  # (h*N, T_q, T_k)

        if causality:
            diag_vals = tf.ones_like(outputs[0, :, :])  # (T_q, T_k)
            tril = tf.contrib.linalg.LinearOperatorTriL(diag_vals).to_dense()  # (T_q, T_k)
            masks = tf.tile(tf.expand_dims(tril, 0), [tf.shape(outputs)[0], 1, 1])  # (h*N, T_q, T_k)

            paddings = tf.ones_like(masks) * (-2 ** 32 + 1)
            outputs = tf.where(tf.equal(masks, 0), paddings, outputs)  # (h*N, T_q, T_k)

        outputs = tf.nn.softmax(outputs)  # (h*N, T_q, T_k)

        query_masks = tf.sign(tf.abs(tf.reduce_sum(emb, axis=-1)))  # (N, T_q)
        query_masks = tf.tile(query_masks, [num_heads, 1])  # (h*N, T_q)
        query_masks = tf.tile(tf.expand_dims(query_masks, -1), [1, 1, tf.shape(keys)[1]])  # (h*N, T_q, T_k)
        outputs *= query_masks  # broadcasting. (N, T_q, C)

        outputs = tf.compat.v1.layers.dropout(outputs, rate=dropout_rate, training=tf.convert_to_tensor(is_training))

        outputs = tf.matmul(outputs, V_)  # ( h*N, T_q, C/h)

        outputs = tf.concat(tf.split(outputs, num_heads, axis=0), axis=2)  # (N, T_q, C)

        outputs += queries

        outputs = normalize(outputs)  # (N, T_q, C)

    return outputs
def feedforward(inputs,
                num_units=[2048, 512],
                scope="multihead_attention",
                reuse=None):
    with tf.compat.v1.variable_scope(scope, reuse=reuse):
        params = {"inputs": inputs, "filters": num_units[0], "kernel_size": 1,
                  "activation": tf.nn.relu, "use_bias": True}
        outputs = tf.compat.v1.layers.conv1d(**params)

        params = {"inputs": outputs, "filters": num_units[1], "kernel_size": 1,
                  "activation": None, "use_bias": True}
        outputs = tf.compat.v1.layers.conv1d(**params)

        outputs += inputs

        outputs = normalize(outputs)

    return outputs
#定义 label_smoothing层¶
def label_smoothing(inputs, epsilon=0.1):
    K = inputs.get_shape().as_list()[-1] # number of channels
    return ((1-epsilon) * inputs) + (epsilon / K)
# 组合语言模型
class language_model():
    def __init__(self, input_vocab_size, label_vocab_size):
        self.graph = tf.Graph()
        with self.graph.as_default():
            self.is_training = True
            self.hidden_units = 512
            self.input_vocab_size = input_vocab_size
            self.label_vocab_size = label_vocab_size
            self.num_heads = 8
            self.num_blocks = 6
            self.max_length = 100
            self.learning_rate = 0.0003
            self.dropout_rate = 0.2

            self.x = tf.compat.v1.placeholder(tf.int32, shape=(None, None))
            self.y = tf.compat.v1.placeholder(tf.int32, shape=(None, None))
            self.emb = embedding(self.x, vocab_size=self.input_vocab_size, num_units=self.hidden_units, scale=True,
                                 scope="enc_embed")
            self.enc = self.emb + embedding(
                tf.tile(tf.expand_dims(tf.range(tf.shape(self.x)[1]), 0), [tf.shape(self.x)[0], 1]),
                vocab_size=self.max_length, num_units=self.hidden_units, zero_pad=False, scale=False, scope="enc_pe")
            self.enc = tf.compat.v1.layers.dropout(self.enc,
                                                   rate=self.dropout_rate,
                                                   training=tf.convert_to_tensor(self.is_training))

            for i in range(self.num_blocks):
                with tf.compat.v1.variable_scope("num_blocks_{}".format(i)):
                    self.enc = multihead_attention(emb=self.emb,
                                                   queries=self.enc,
                                                   keys=self.enc,
                                                   num_units=self.hidden_units,
                                                   num_heads=self.num_heads,
                                                   dropout_rate=self.dropout_rate,
                                                   is_training=self.is_training,
                                                   causality=False)

            self.outputs = feedforward(self.enc, num_units=[4 * self.hidden_units, self.hidden_units])

            self.logits = tf.compat.v1.layers.dense(self.outputs, self.label_vocab_size)
            self.preds = tf.compat.v1.to_int32(tf.argmax(self.logits, axis=-1))
            self.istarget = tf.compat.v1.to_float(tf.not_equal(self.y, 0))
            self.acc = tf.reduce_sum(tf.compat.v1.to_float(tf.equal(self.preds, self.y)) * self.istarget) / (
                tf.reduce_sum(self.istarget))
            tf.summary.scalar('acc', self.acc)

            if self.is_training:
                self.y_smoothed = label_smoothing(tf.one_hot(self.y, depth=self.label_vocab_size))
                self.loss = tf.compat.v1.nn.softmax_cross_entropy_with_logits_v2(logits=self.logits,
                                                                                 labels=self.y_smoothed)
                self.mean_loss = tf.reduce_sum(self.loss * self.istarget) / (tf.reduce_sum(self.istarget))

                self.global_step = tf.Variable(0, name='global_step', trainable=False)
                self.optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate=self.learning_rate, beta1=0.9,
                                                                  beta2=0.98, epsilon=1e-8)
                self.train_op = self.optimizer.minimize(self.mean_loss, global_step=self.global_step)

                tf.summary.scalar('mean_loss', self.mean_loss)
                self.merged = tf.compat.v1.summary.merge_all()


print('语音模型建立完成!')

4.训练语言模型

input_vocab_size = len(train_data.pin_vocab)
label_vocab_size = len(train_data.han_vocab)
is_training = True
language = language_model(input_vocab_size,label_vocab_size)

epochs = 20

with language.graph.as_default():
    saver =tf.compat.v1.train.Saver()
with tf.compat.v1.Session(graph=language.graph) as sess:
    merged = tf.compat.v1.summary.merge_all()
    sess.run(tf.compat.v1.global_variables_initializer())
    if os.path.exists('./speech_recognition/language_model/model.meta'):
        print('加载语言模型')
        saver.restore(sess, './speech_recognition/language_model/model')
    for k in range(epochs):
        total_loss = 0
        batch = train_data.get_language_model_batch()
        for i in range(batch_num):
            input_batch, label_batch = next(batch)
            feed = {language.x: input_batch, language.y: label_batch}
            cost,_ = sess.run([language.mean_loss,language.train_op], feed_dict=feed)
            total_loss += cost
        print('第', k+1, '个 epoch', ': average loss = ', total_loss/batch_num)
    print("\n训练完成")

5.模型测试

准备解码所需字典,需和训练一致,也可以将字典保存到本地,直接进行读取

train_data = get_data()

test_data = get_data()
acoustic_model_batch = test_data.get_acoustic_model_batch()
language_model_batch = test_data.get_language_model_batch()

vocab_size = len(train_data.acoustic_vocab)
acoustic = acoustic_model(vocab_size)
acoustic.ctc_model.load_weights('./speech_recognition/acoustic_model/model.h5')
print('\n加载声学模型完成!')
tf.compat.v1.disable_v2_behavior()
input_vocab_size = len(train_data.pin_vocab)
label_vocab_size = len(train_data.han_vocab)
language = language_model(input_vocab_size,label_vocab_size)
sess = tf.compat.v1.Session(graph=language.graph)
with language.graph.as_default():
    saver =tf.compat.v1.train.Saver()
with sess.as_default():
    saver.restore(sess, './speech_recognition/language_model/model')

print('\n加载语言模型完成!')
def decode_ctc(num_result, num2word):
    result = num_result[:, :, :]
    in_len = np.zeros((1), dtype = np.int32)
    in_len[0] = result.shape[1]
    t = K.ctc_decode(result, in_len, greedy = True, beam_width=10, top_paths=1)
    v = K.get_value(t[0][0])
    v = v[0]
    text = []
    for i in v:
        text.append(num2word[i])
    return v, text
for i in range(10):
    print('\n示例', i+1)
    # 载入训练好的模型,并进行识别
    inputs, outputs = next(acoustic_model_batch)
    x = inputs['the_inputs']
    y = inputs['the_labels'][0]
    result = acoustic.model.predict(x, steps=1)
    # 将数字结果转化为文本结果
    _, text = decode_ctc(result, train_data.acoustic_vocab)
    text = ' '.join(text)
    text = text.replace(" _", "")
    print('原文拼音:', ' '.join([train_data.acoustic_vocab[int(i)] for i in y]))
    print('识别结果:', text)
    with sess.as_default():
        try:
            _, y = next(language_model_batch)
            text = text.strip('\n').split(' ')
            x = np.array([train_data.pin_vocab.index(pin) for pin in text])
            x = x.reshape(1, -1)
            preds = sess.run(language.preds, {language.x: x})
            got = ''.join(train_data.han_vocab[idx] for idx in preds[0])
            print('原文汉字:', ''.join(train_data.han_vocab[idx] for idx in y[0]))
            print('识别结果:', got)
        except StopIteration:
            break
sess.close()

5.总结

原文链接:https://bbs.huaweicloud.com/blogs/386935

具体细节内容可参考原文链接进行学习。