每日OJ题_贪心算法三③_力扣45. 跳跃游戏 II(dp解法+贪心解法)

发布于:2024-05-09 ⋅ 阅读:(159) ⋅ 点赞:(0)

目录

力扣45. 跳跃游戏 II

解析代码1_动态规划

解析代码2_贪心


力扣45. 跳跃游戏 II

45. 跳跃游戏 II

难度 中等

给定一个长度为 n 的 0 索引整数数组 nums。初始位置为 nums[0]

每个元素 nums[i] 表示从索引 i 向前跳转的最大长度。换句话说,如果你在 nums[i] 处,你可以跳转到任意 nums[i + j] 处:

  • 0 <= j <= nums[i] 
  • i + j < n

返回到达 nums[n - 1] 的最小跳跃次数。生成的测试用例可以到达 nums[n - 1]

示例 1:

输入: nums = [2,3,1,1,4]
输出: 2
解释: 跳到最后一个位置的最小跳跃数是 2。从下标为 0 跳到下标为 1 的位置,跳 1 步,然后跳 3 步到达数组的最后一个位置。

示例 2:

输入: nums = [2,3,0,1,4]
输出: 2

提示:

  • 1 <= nums.length <= 10^4
  • 0 <= nums[i] <= 1000
  • 题目保证可以到达 nums[n-1]
class Solution {
public:
    int jump(vector<int>& nums) {

    }
};

解析代码1_动态规划

动态规划解法:(时间是O(N^2),刚好能AC,下面的贪心解法是O(N))

状态表示:dp[i] 表⽰从 0 位置开始,到达 i 位置时候的最小跳跃次数

状态转移方程:对于 dp[i] ,遍历 0 ~ i - 1 区间(用指针 j 表示),只要能够从 j 位置跳到 i 位置( nums[j] + j >= i ),就用 dp[j] + 1 更新 dp[i] 里面的值,找到所有情况下的最小值即可。

class Solution {
public:
    int jump(vector<int>& nums) {
        int n = nums.size();
        vector<int> dp(n, INT_MAX);
        dp[0] = 0;
        for(int i = 1; i < n; ++i)
        {
            for(int j = 0; j < i; ++j)
            {
                if(nums[j] + j >= i) 
                {
                    dp[i] = dp[j] + 1;
                    break;
                }
            }
        }
        return dp[n -1];
    }
};


解析代码2_贪心

        用类似层序遍历的过程,将第 i 次跳跃的起始位置和结束位置找出来,用这次跳跃的情况,更新出下一次跳跃的起始位置和结束位置。这样循环往复,就能更新出到达 n - 1 位置的最小跳跃步数。时间复杂度是O(N)。

class Solution {
public:
    int jump(vector<int>& nums) {
        int left = 0, right = 0, maxPos = 0, ret = 0, n = nums.size();
        // 这一次起跳的左端点,右端点,下一次起跳的右端点
        while(left <= right)
        {
            if(maxPos >= n - 1)
                return ret;
            for(int i = left; i <= right; ++i)
            {
                maxPos = max(maxPos, i + nums[i]);
            }
            left = right + 1; // 更新起跳左右端点并++ret
            right = maxPos;
            ++ret;
        }
        return -1; // 不会走到这
    }
};