【C++STL详解(六)】--------list的模拟实现

发布于:2024-05-09 ⋅ 阅读:(29) ⋅ 点赞:(0)

目录

前言

一、接口总览

一、节点类的模拟实现

二、迭代器类的模拟实现

迭代器的目的

list迭代器为何要写成类?

迭代器类模板参数说明

模拟实现

1.构造函数

2.*运算符重载

3.->运算符重载

4.前置++

5.后置++

6.前置--

7.后置--

8.!=

9.==

三、list类的模拟实现

Ⅰ、默认成员函数

​编辑

1.构造函数

2.拷贝构造

3.赋值重载

4.析构函数

二、迭代器

begin+end

三、访问数据

front和back

四、增删查改

1.insert()

2.erase()

3.push_back

4.pop_back()

5push_front

6.pop_front

7.clear()

8.swap()

五、容量

size

empty()


前言

对于list的模拟实现重点是其迭代器的实现,同时这又是对C++类与对象的一次更深刻的理解与体会!

一、接口总览

namespace li
{
	//节点结构
	template<class T>
	struct ListNode
	{
        //成员变量
		ListNode<T>* _prev;
		ListNode<T>* _next;
		T _date;

		ListNode(const T& value = T());//构造函数
	};


    //迭代器类
    template<class T, class Ref, class Ptr>
	struct ListIterator
	{
		typedef ListNode<T> Node;
		typedef ListIterator<T, Ref, Ptr> Self;
		Node* _node;

		ListIterator(Node* node);
		Ref operator*();

		Ptr operator->();

		//++it
		Self& operator++();

		//it++
		Self operator++(int);

		//--it
		Self& operator--();

		//it--
		Self operator--(int);

		//it1!=it2
		bool operator!=(const Self& it);
		//it1==it2
		bool operator==(const Self& it);
	};

	//list结构
	template<class T>
	class list
	{
	public:
		typedef ListNode<T>  Node;
		typedef ListIterator<T, T&, T*> iterator;
		typedef ListIterator<T, const T&, const T*> const_iterator;

		void empty_init()
		// //iterator///
		iterator begin();
		iterator end();
		const_iterator begin()const;
		const_iterator end()const;

		// /

		// ///构造//
		list();
		list(int n, const T& value = T());

		//迭代器区间初始化
		template <class Iterator>
		list(Iterator first, Iterator last);

		//拷贝构造
		//it1(it2
		list(const list<T>& l);

		//赋值构造
		//it1=it2
		list<T>& operator=(list<T> l);
		//析构函数
		~list();
		

		//modify
		iterator insert(iterator pos, const T& x);
		iterator erase(iterator pos);
		void push_back(const T& x);
		void pop_back();
		void push_front(const T& val);
		void pop_front();
		void clear();

		void swap(list<T>& l);

		///
		// List Capacity
		size_t size()const;
		bool empty()const;

		
		// List Access
		T& front();
		const T& front()const;
		T& back();
		const T& back()const;


	private:
		Node* _head;
		size_t _size;
	};
}

同样要再自己的命名空间域里面模拟实现!!!

一、节点类的模拟实现

前面我们也有说到list实际上底层就是一个带头双向循环链表,链表的结构就是由一个又一个的结点组成,但是呢,list每次实例化出来的对象数据类型可能不一样,因此我们首先需要实现一个结点类!每一个结点所包含的信息有:数据、前驱指针、后继指针!同时类里面只需要实现一个构造函数。因为该结点类只需根据数据类型去构造去一个结点即可!

//结点类
template<class T>
struct ListNode
{
	ListNode<T>* _prev;//前驱指针
	ListNode<T>* _next;//后继指针
	T _date;//数据

	ListNode(const T& value = T())//全缺省
		:_prev(nullptr)
		, _next(nullptr)
		, _date(value)
		{}
};

对于构造函数里面的参数在vector的模拟实现有提及,如果有传值,那就用对应类型的值即可,如果没有,那就使用对应类型的默认构造函数所构造出来的值作为数据!

注意:这个用关键字struct的类,默认的成员变量和成员函数是公开的,类内类外都可以访问!

二、迭代器类的模拟实现

迭代器的目的

在解释原因之前,我们需要了解到一点就是迭代器的意义或者说目的到底是什么?

实际上,迭代器的目的就是:不关注底层的实现细节,能够采用一种类似于指针的方式去访问容器中的内容和数据!说白了就是想要去模拟指针的行为!(++,--,*等操作)

list迭代器为何要写成类?

在前面的stringvector的模拟实现中我们都没有单独的去实现这样一个迭代器类,为啥这里需要呢?实际上就是因为底层空间结构,string和vector是一段连续的空间,他们底层的迭代器就是原生的指针

而list底层的结构是不连续的,随机的,如果采用直接采用原生的指针结点去作为迭代器,那么对于++这类的操作符,一个结点能进行吗?很显然是不能的,因为不是连续的空间!

所以,对于list的迭代器,虽说本质还是原生的结点指针,但是不能直接采用,因为原生的结点指针不能够满足我们所需要的迭代器的行为,也就是它不能像vector和string的迭代器那样直接进行++,--,*等操作!

所以的所以,内置类型不能满足我们所需要的行为时,我们可以将其封装成自定义类型,也就是将原生的结点指针封装成一个类,这样就变成了自定义类型,对于一个类,我们就可以进行运算符的重载!比如表面上是对迭代器进行++操作,其底层实际上是node=node->next!这不是就符合迭代器存在的目的吗?

总结:list迭代器,由于原生结点不能满足我们所需的行为,因此要将其封装成一个类,也就是变成自定义类型,就能控制它的行为!

迭代器类模板参数说明

template<class T, class Ref, class Ptr>

这个参数的存在就是就是因为迭代器实际有两种,一个是非const,一个为const对象提供的。而这两种迭代器的底层实现起来其实大差不差,为了让代码不冗余,所以去定义了这个重定义类型。可以看list类中的这几个重定义类型

typedef ListIterator<T, T&, T*> iterator;
typedef ListIterator<T, const T&, const T*> const_iterator;

可以看到Ref对应的是T引用,Ptr对应的就是T指针,他们会根据传进来的类型自动匹配!如果不设计就很难区分。

为啥要一个引用,一个指针呢?实际和运算符重载有关,接着向下看!

模拟实现

1.构造函数

本质还是结点指针,所以迭代器需要传进来一个结点指针完成构造!

ListIterator(Node* node)
		:_node(node)
{}

2.*运算符重载


//*it
Ref operator*()
{
    return _node->_date;
}

这个操作实际上相当于指针的解引用,*it,访问数据,对于解引用操作,我们不仅可以对当前是数据进行读操作,还能重新赋值,也就是可读可写,所以采用引用返回!所以原本是T&,但由于要区分const T&,就用了Ref这个模板参数,这就是它的由来

3.->运算符重载

这个的存在,在某些场景下面用迭代器是可能会用到->操作!

如下场景:

如我们的容器里面的数据类型不是内置类型,而是自定义类型时,可能会使用到这个运算符

比如上面这段代码,在*it时会发生错误,因为解引用只是访问到A而已,没有访问到里面的成员变量

改法1:

改法2:

这里就需要使用到运算符->重载,实际上这里完整的写法是:it.operator->()->_a,缩写就是两个->->,第一个->实际上获取的是A*,第二个是对A*指针的解引用!编译器为了代码可读性,省略了一个!

有上面的知识可以得出重载的底层实现了,实际上就是返回当前数据的地址

//为了像指针那样去操作:it->;
Ptr operator->()
{
	return &_node->_date;
}

这里原本的返回类型是T*的,但是由于要区分const T*, 所以设计一个模板参数叫做Ptr,它会根据传进来的数据类型进行实例化,这也是它由来的原因!

注意:-->操作要求成员变量是公有的才可以访问!

4.前置++

前置++要求是当前对象先自增完才返回自增后的数据,自增的操作实际上就是让指针向后移动

//++it
Self& operator++()
{
	_node = _node->_next;
	return *this;
}

注意:Self为当前迭代器的类型

typedef ListIterator<T, Ref, Ptr> Self;

5.后置++

后置++,要先返回加之前的结果,然后再++,所以可以拷贝构造出一个临时变量,然后再自增,最后再返回这个临时变量即可!注意了,这里不能用引用返回,而是使用传值返回,因为临时变量具有常性的原因,可读不可写

//it++
Self operator++(int)
{
	Self tmp(*this);//虽然这个类,没有拷贝构造,但是默认生成的拷贝构造就已经够用了,因为迭代器只需要浅拷贝就好了
	_node = _node->_next;
	return tmp;
}

需要注意后置的写法!!!这个再类和对象二有提及

6.前置--

这个和前置++一样的思路,让指针前移即可!

Self& operator--()
{
	_node = _node->_prev;
	 return *this;
}

7.后置--

Self operator--(int)
{
	Self tmp(*this);
	_node = _node->_prev;
	return tmp;
}

8.!=

注意这里是比较两个结点的指针,不是里面的数据,如果比较数据,那就扯淡了,因为可能数据会相同!

bool operator!=(const Self& it)
{
	return _node != it._node;
}

9.==

也是比较指针!

bool operator==(const Self& it)
{
	return _node == it._node;
}

其实可以看出上一章list的介绍与使用中,为什么,list的迭代器只能++,而不能是begin()+5等等之类的了,因为底层压根没有重载,同时它本身的结构也不支持!

容器之间的迭代器底层实现是不一样的,这取决于他们的底层结构,但是表面上使用起来类似,都是去模仿指针的行为!

三、list类的模拟实现

Ⅰ、默认成员函数

成员变量无需多言,就是一个结点指针,外加一个size!以及额外的三个重命名类型!

public:
typedef ListNode<T>  Node;
typedef ListIterator<T, T&, T*> iterator;
typedef ListIterator<T, const T&, const T*> const_iterator;

//成员变量
private:
Node* _head;
size_t _size;

除此之外,我们新设置了个成员函数初始化空链表的,因为每次构造都需要先构造一个空的链表,然后再进行后续操作!

void empty_init()
{
	_head = new Node;
	_head->_next = _head;
	_head->_prev = _head;
	_size = 0;
}

1.构造函数

  • 无参数构造
list()
{
	empty_init();
}
  • 特定值初始化
list(int n, const T& value = T())
{
	empty_init();
	for (int i = 0; i < n; i++)
	{
		push_back(value);//尾插数据即可
	}
}
  • 迭代器区间初始化
template <class Iterator>
list(Iterator first, Iterator last)
{
	empty_init();
	while (first != last)
	{
		push_back(*first);
		++first;
	}

}

这里和vector的类似!

2.拷贝构造

先初始化一个头,再尾插即可!

//拷贝构造
//it1(it2)
list(const list<T>& l)
{
	empty_init();
	for (auto& e : l)
	{
		push_back(e);
	}
}

3.赋值重载

这里我们采用现代写法!使用复用拷贝构造+swap交换

//赋值构造
//it1=it2
list<T>& operator=(list<T> l)//引用返回支持连续赋值
{
	swap(l);
	return *this;
}

这里也可以采用类似 string类中传统写法,先清理容器,再一个个尾插!

//赋值构造
//it1=it2
list<T>& operator=(const list<T>& l)
{
	if (this != &l)//避免自己给自己赋值
	{
		clear();//清理容器
		for (auro& e : l)
		{
			push_back(e);//尾插到it1
		}
	}
	return *this;

}

4.析构函数

先清理内容,再释放头结点!

//析构函数
~list()
{
	clear();
	delete _head;
	_head = nullptr;
}

二、迭代器

begin+end

需知:begin():返回的是第一个有效数据的迭代器

end():返回的是最后一个有效数据的下一个位置的迭代器

iterator begin()
{
	return iterator(_head->_next);//会去调用迭代器类构造一个迭代器,再返回
    //return _head->_next;也可以这样去写,因为单参数的构造函数支持隐式类型的转化
    //而iterator的构造函数实际上就是单参数的构造
}

iterator end()
{
	return iterator(_head);
}


//const迭代器
const_iterator begin()const
{
	return iterator(_head->_next);
}

const_iterator end()const
{
	return iterator(_head);
}

对于const迭代器,不能写成const iterator,这样性质就不同了,因为这个表示的是迭代器本身不能修改,而我们期望的是指向的内容不能修改,所以const iterator不是我们需要的迭代器!

一定要注意区分这里的iterator和vector中的iterator,这里的iterator已经被重命名了,它实际上是一个类!

typedef ListIterator<T, T&, T*> iterator;
typedef ListIterator<T, const T&, const T*> const_iterator;

三、访问数据

front和back

front:返回list的第一个结点中值的引用,就是取头数据

back:返回list的最后一个结点中值的引用,就是取尾数据

T& front()
{
	return _head->_next->_date;
}
const T& front()const
{
	return _head->_next->_date;
}
T& back()
{
	return _head->_prev->_date;
}
const T& back()const
{
	return _head->_prev->_date;
}

四、增删查改

1.insert()

在pos位置前插入操作,并返回pos位置的迭代器!这个pos实际上也是个迭代器!具体可以看上节的原函数list的介绍与使用!这个只模拟实现一个就是插入值的操作!

这里的插入,实际上就是new一个结点出来,在进行插入操作即可!

iterator insert(iterator pos, const T& x)
{
	Node* newnode = new Node(x);
	Node* cur = pos._node;
	Node* prev = cur->_prev;

	prev->_next = newnode;
	newnode->_prev = prev;
	newnode->_next = cur;
	cur->_prev = newnode;

	++_size;

	return pos;
}

2.erase()

删除pos位置的值,并返回pos位置的迭代器。所以这里会存在迭代器失效的问题,注意只是当前迭代器失效,之后的其他迭代器并不会受到任何影响!因为每一个迭代器都是由一个个结点构造出来的!

iterator erase(iterator pos)
{
	Node* cur = pos._node;
	Node* prev = cur->_prev;
	Node* next = cur->_next;

	prev->_next = next;
	next->_prev = prev;
	delete cur;
	--_size;

	return next;
}

需要注意删除操作,我们需要先保存当前结点的前一个结点和后一个结点,这样才能将其前后的两个结点连接起来!

3.push_back

尾插操作,实际上就是在end()位置插入,就是头结点的前面插入!直接复用insert

void push_back(const T& x)
{
	insert(end(), x);
}

4.pop_back()

尾删操作,直接复用erase即可!

void pop_back()
{
	erase(--end());//这里只能--end,不能end-1因为end是传值返回的
}

5push_front

头插操作,直接复用!

void push_front(const T& val)
{
	insert(begin(), val);
}

6.pop_front

头删操作,直接复用!

void pop_front()
{
	erase(begin());
}

7.clear()

清理工作,保留头节点!

void clear()
{
	iterator it = begin();
	while (it != end())
	{
		it=erase(it);//注意这里一定要更新迭代器,因为会失效
	}
}

8.swap()

void swap(list<T>& l)
{
	std::swap(_head, l._head);
	std::swap(_size, l._size);
}

直接复用全局的swap

五、容量

size

这里我们在插入和删除操作,都加上了++size或者--size了。所以直接调用即可!

size_t size()const
{
	return _size;
}

empty()

bool empty()const
{
	return _size == 0;
}

好了今天的分享就到这里,我认为这是我学C++的第二个难点,重点就是迭代器类的模拟实现,它再一次体现了类和对象的特点以及封装的特性。值得反复去体会和反思!!!


网站公告

今日签到

点亮在社区的每一天
去签到