gpt2使用ggml推理

发布于:2024-05-24 ⋅ 阅读:(158) ⋅ 点赞:(0)

gpt2使用ggml推理

ggml/examples/gpt-2/main-backend.cpp :

#include "ggml/ggml.h"
#include "ggml/ggml-alloc.h"
#include "ggml/ggml-backend.h"

#ifdef GGML_USE_CUDA
#include "ggml-cuda.h"
#endif

#ifdef GGML_USE_METAL
#include "ggml-metal.h"
#endif

#include "common.h"
#include "common-ggml.h"

#include <cassert>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <map>
#include <string>
#include <vector>

#if defined(_MSC_VER)
#pragma warning(disable : 4244 4267) // possible loss of data
#endif

#define GPT2_MAX_NODES 4096

static void ggml_log_callback_default(ggml_log_level level, const char *text, void *user_data)
{
    (void)level;
    (void)user_data;
    fputs(text, stderr);
    fflush(stderr);
}

// default hparams (GPT-2 117M)
struct gpt2_hparams
{
    int32_t n_vocab = 50257;
    int32_t n_ctx = 1024;
    int32_t n_embd = 768;
    int32_t n_head = 12;
    int32_t n_layer = 12;
    int32_t ftype = 1;
    float eps = 1e-5f;
};

struct gpt2_layer
{
    // normalization
    struct ggml_tensor *ln_1_g;
    struct ggml_tensor *ln_1_b;

    struct ggml_tensor *ln_2_g;
    struct ggml_tensor *ln_2_b;

    // attention
    struct ggml_tensor *c_attn_attn_w;
    struct ggml_tensor *c_attn_attn_b;

    struct ggml_tensor *c_attn_proj_w;
    struct ggml_tensor *c_attn_proj_b;

    // mlp
    struct ggml_tensor *c_mlp_fc_w;
    struct ggml_tensor *c_mlp_fc_b;

    struct ggml_tensor *c_mlp_proj_w;
    struct ggml_tensor *c_mlp_proj_b;
};

struct gpt2_model
{
    gpt2_hparams hparams;

    // normalization
    struct ggml_tensor *ln_f_g;
    struct ggml_tensor *ln_f_b;

    struct ggml_tensor *wte;     // position embedding
    struct ggml_tensor *wpe;     //    token embedding
    struct ggml_tensor *lm_head; // language model head

    std::vector<gpt2_layer> layers;

    // key + value memory
    struct ggml_tensor *memory_k;
    struct ggml_tensor *memory_v;

    //
    struct ggml_context *ctx_w;
    struct ggml_context *ctx_kv;

    ggml_backend_t backend = NULL;

    ggml_backend_buffer_t buffer_w;
    ggml_backend_buffer_t buffer_kv;

    std::map<std::string, struct ggml_tensor *> tensors;
};

// load the model's weights from a file  从文件加载模型,初始化ggml后端
bool gpt2_model_load(const std::string &fname, gpt2_model &model, gpt_vocab &vocab, int n_ctx, int n_gpu_layers)
{
    printf("%s: loading model from '%s'\n", __func__, fname.c_str());

    auto fin = std::ifstream(fname, std::ios::binary);
    if (!fin)
    {
        fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
        return false;
    }

    // verify magic  校验ggml文件头
    {
        uint32_t magic;
        fin.read((char *)&magic, sizeof(magic));
        if (magic != GGML_FILE_MAGIC)
        {
            fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
            return false;
        }
    }

    // load hparams  加载超参数
    {
        auto &hparams = model.hparams;

        fin.read((char *)&hparams.n_vocab, sizeof(hparams.n_vocab));
        fin.read((char *)&hparams.n_ctx, sizeof(hparams.n_ctx));
        fin.read((char *)&hparams.n_embd, sizeof(hparams.n_embd));
        fin.read((char *)&hparams.n_head, sizeof(hparams.n_head));
        fin.read((char *)&hparams.n_layer, sizeof(hparams.n_layer));
        fin.read((char *)&hparams.ftype, sizeof(hparams.ftype));

        const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR;

        printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
        printf("%s: n_ctx   = %d\n", __func__, hparams.n_ctx);
        printf("%s: n_embd  = %d\n", __func__, hparams.n_embd);
        printf("%s: n_head  = %d\n", __func__, hparams.n_head);
        printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
        printf("%s: ftype   = %d\n", __func__, hparams.ftype);
        printf("%s: qntvr   = %d\n", __func__, qntvr);

        hparams.ftype %= GGML_QNT_VERSION_FACTOR;
    }

    // load vocab   加载词汇表
    {
        int32_t n_vocab = 0;
        fin.read((char *)&n_vocab, sizeof(n_vocab));

        if (n_vocab != model.hparams.n_vocab)
        {
            fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
                    __func__, fname.c_str(), n_vocab, model.hparams.n_vocab);
            return false;
        }

        std::string word;
        std::vector<char> buf(128);

        for (int i = 0; i < n_vocab; i++)
        {
            uint32_t len;
            fin.read((char *)&len, sizeof(len));

            buf.resize(len);
            fin.read((char *)buf.data(), len);
            word.assign(buf.data(), len);

            vocab.token_to_id[word] = i;
            vocab.id_to_token[i] = word;
        }
    }

    //对于大张量,我们可以选择将数据存储在 16 位浮点数或量化中
    // 为了节省内存并加快计算速度
    // for the big tensors, we have the option to store the data in 16-bit floats or quantized
    // in order to save memory and also to speed up the computation
    ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype)(model.hparams.ftype));
    if (wtype == GGML_TYPE_COUNT)
    {
        fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n",
                __func__, fname.c_str(), model.hparams.ftype);
        return false;
    }

    auto &ctx = model.ctx_w;

    // create the ggml context  根据模型张量数,创建并初始化ggml  context
    {
        size_t n_tensors = 2 + 6 + 12 * model.hparams.n_layer;
        struct ggml_init_params params = {
            /*.mem_size   =*/ggml_tensor_overhead() * n_tensors,
            /*.mem_buffer =*/NULL,
            /*.no_alloc   =*/true,
        };

        ctx = ggml_init(params);
        if (!ctx)
        {
            fprintf(stderr, "%s: ggml_init() failed\n", __func__);
            return false;
        }
    }

    // initialize the backend  初始化cuda后端
#ifdef GGML_USE_CUDA
    if (n_gpu_layers > 0)
    {
        fprintf(stderr, "%s: using CUDA backend\n", __func__);
        model.backend = ggml_backend_cuda_init(0);
        if (!model.backend)
        {
            fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__);
        }
    }
#endif

// 初始化 metal 后端
#ifdef GGML_USE_METAL
    if (n_gpu_layers > 0)
    {
        fprintf(stderr, "%s: using Metal backend\n", __func__);
        ggml_backend_metal_log_set_callback(ggml_log_callback_default, nullptr);
        model.backend = ggml_backend_metal_init();
        if (!model.backend)
        {
            fprintf(stderr, "%s: ggml_backend_metal_init() failed\n", __func__);
        }
    }
#endif

    // 初始化cpu后端
    if (!model.backend)
    {
        // fallback to CPU backend
        fprintf(stderr, "%s: using CPU backend\n", __func__);
        model.backend = ggml_backend_cpu_init();
    }

    if (!model.backend)
    {
        fprintf(stderr, "%s: ggml_backend_cpu_init() failed\n", __func__);
        return false;
    }

    // create the tensors for the model   创建模型张量
    {
        const auto &hparams = model.hparams;

        const int n_embd = hparams.n_embd;
        const int n_layer = hparams.n_layer;
        const int n_ctx = hparams.n_ctx;
        const int n_vocab = hparams.n_vocab;

        model.layers.resize(n_layer);

        model.ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
        model.ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);

        model.wte = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
        model.wpe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ctx);
        model.lm_head = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);

        // map by name 映射张量<名称,张量>
        model.tensors["model/ln_f/g"] = model.ln_f_g;
        model.tensors["model/ln_f/b"] = model.ln_f_b;

        model.tensors["model/wte"] = model.wte;
        model.tensors["model/wpe"] = model.wpe;
        model.tensors["model/lm_head"] = model.lm_head;

        //创建各层张量
        for (int i = 0; i < n_layer; ++i)
        {
            auto &layer = model.layers[i];

            layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
            layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);

            layer.ln_2_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
            layer.ln_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);

            layer.c_attn_attn_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 3 * n_embd);
            layer.c_attn_attn_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 3 * n_embd);

            layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
            layer.c_attn_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);

            layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 4 * n_embd);
            layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4 * n_embd);

            layer.c_mlp_proj_w = ggml_new_tensor_2d(ctx, wtype, 4 * n_embd, n_embd);
            layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);

            // map by name  映射张量表<名称,张量>
            model.tensors["model/h" + std::to_string(i) + "/ln_1/g"] = layer.ln_1_g;
            model.tensors["model/h" + std::to_string(i) + "/ln_1/b"] = layer.ln_1_b;

            model.tensors["model/h" + std::to_string(i) + "/ln_2/g"] = layer.ln_2_g;
            model.tensors["model/h" + std::to_string(i) + "/ln_2/b"] = layer.ln_2_b;

            model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/w"] = layer.c_attn_attn_w;
            model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/b"] = layer.c_attn_attn_b;

            model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/w"] = layer.c_attn_proj_w;
            model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/b"] = layer.c_attn_proj_b;

            model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/w"] = layer.c_mlp_fc_w;
            model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/b"] = layer.c_mlp_fc_b;

            model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/w"] = layer.c_mlp_proj_w;
            model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/b"] = layer.c_mlp_proj_b;
        }
    }

    // allocate the model tensors in a backend buffer  在ggml后端缓冲区中分配模型张量
    model.buffer_w = ggml_backend_alloc_ctx_tensors(ctx, model.backend);

    printf("%s: ggml tensor size    = %d bytes\n", __func__, (int)sizeof(ggml_tensor));
    printf("%s: backend buffer size = %6.2f MB\n", __func__, ggml_backend_buffer_get_size(model.buffer_w) / (1024.0 * 1024.0));

    // override the default training context with the user-provide 使用用户提供的context数量
    model.hparams.n_ctx = n_ctx;

    // key + value memory  创建初始化 k,v缓存context
    {
        auto *ctx = model.ctx_kv;

        // create the ggml context
        {
            size_t n_tensors = 2;
            struct ggml_init_params params = {
                /*.mem_size   =*/ggml_tensor_overhead() * n_tensors,
                /*.mem_buffer =*/NULL,
                /*.no_alloc   =*/true,
            };

            ctx = ggml_init(params);
            if (!ctx)
            {
                fprintf(stderr, "%s: ggml_init() failed\n", __func__);
                return false;
            }
        }

        const auto &hparams = model.hparams;

        const int n_embd = hparams.n_embd;
        const int n_layer = hparams.n_layer;
        const int n_ctx = hparams.n_ctx;

        const int n_mem = n_layer * n_ctx;
        const int n_elements = n_embd * n_mem;

        model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
        model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);

        // allocate the KV memory in a backend buffer
        //  在ggml后端分配k,v缓存
        model.buffer_kv = ggml_backend_alloc_ctx_tensors(ctx, model.backend);

        //获取后端内存大小
        const size_t memory_size = ggml_backend_buffer_get_size(model.buffer_kv);
        printf("%s: memory size = %8.2f MB, n_mem = %d\n", __func__, memory_size / 1024.0 / 1024.0, n_mem);
    }

    // load weights  加载权重
    {
        size_t total_size = 0;

        bool has_lm_head = false;

        std::vector<char> read_buf;

        while (true)
        {
            int32_t n_dims;
            int32_t length;
            int32_t ttype;

            //读取模型张量维数,名称长度,量化类型
            fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
            fin.read(reinterpret_cast<char *>(&length), sizeof(length));
            fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype));

            if (fin.eof())
            {
                break;
            }

            int32_t nelements = 1; //统计张量元素个数
            int32_t ne[2] = {1, 1};
            for (int i = 0; i < n_dims; ++i)
            { //#读取张量所有维度值
                fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
                nelements *= ne[i];
            }

            std::string name(length, 0);
            fin.read(&name[0], length); //读取张量名称

            // 校验张量名称是否在模型张量表中
            if (model.tensors.find(name) == model.tensors.end())
            {
                fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.c_str());
                return false;
            }

            //获取张量
            auto tensor = model.tensors[name];
            ggml_set_name(tensor, name.c_str());

            //校验张量元素个数
            if (ggml_nelements(tensor) != nelements)
            {
                fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.c_str());
                return false;
            }

            //校验张量2个维度是否匹配
            if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1])
            {
                fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
                        __func__, name.c_str(), (int)tensor->ne[0], (int)tensor->ne[1], ne[0], ne[1]);
                return false;
            }

            // for debugging
            if (0)
            {
                printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.c_str(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor) / 1024.0 / 1024.0, ggml_nbytes(tensor));
            }

            //校验张量内存占用
            const size_t bpe = ggml_type_size(ggml_type(ttype));
            if ((nelements * bpe) / ggml_blck_size(tensor->type) != ggml_nbytes(tensor))
            {
                fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
                        __func__, name.c_str(), ggml_nbytes(tensor), nelements * bpe);
                return false;
            }

            //读取张量到ggml后端设备内存
            if (ggml_backend_buffer_is_host(model.buffer_w))
            {
                // for some backends such as CPU and Metal, the tensor data is in system memory and we can read directly into it
                fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
            }
            else
            {
                // read into a temporary buffer first, then copy to device memory
                read_buf.resize(ggml_nbytes(tensor));
                fin.read(read_buf.data(), ggml_nbytes(tensor));
                ggml_backend_tensor_set(tensor, read_buf.data(), 0, ggml_nbytes(tensor));
            }

            // GPT-2 models share the WTE tensor as the LM head
            // GPT-2模型共享WTE张量作为LM头
            if (name == "model/wte" && has_lm_head == false)
            {
                // ggml_backend_tensor_copy(tensor, model.lm_head);
                model.lm_head = tensor;
            }

            if (name == "model/lm_head")
            {
                has_lm_head = true;
            }

            //统计权重占用设备内存大小
            total_size += ggml_nbytes(tensor);
        }

        printf("%s: model size  = %8.2f MB\n", __func__, total_size / 1024.0 / 1024.0);
    }

    fin.close();

    return true;
}

// build the computation graph   创建计算图
struct ggml_cgraph *gpt2_graph(
    const gpt2_model &model,
    const int n_past,
    const int n_tokens)
{
    const int N = n_tokens;

    const auto &hparams = model.hparams;

    const int n_embd = hparams.n_embd;
    const int n_layer = hparams.n_layer;
    const int n_ctx = hparams.n_ctx;
    const int n_head = hparams.n_head;

    // since we are using ggml-alloc, this buffer only needs enough space to hold the ggml_tensor and ggml_cgraph structs, but not the tensor data
    static size_t buf_size = ggml_tensor_overhead() * GPT2_MAX_NODES + ggml_graph_overhead_custom(GPT2_MAX_NODES, false);
    static std::vector<uint8_t> buf(buf_size);

    struct ggml_init_params params = {
        /*.mem_size   =*/buf_size,
        /*.mem_buffer =*/buf.data(),
        /*.no_alloc   =*/true, // the tensors will be allocated later by ggml_gallocr_alloc_graph()
    };

    struct ggml_context *ctx = ggml_init(params);

    struct ggml_cgraph *gf = ggml_new_graph_custom(ctx, GPT2_MAX_NODES, false);

    struct ggml_tensor *embd = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, N);
    // at this point, the tensor data is not allocated yet and cannot be set
    // we will find the tensor after the graph is allocated by its name, and set the data then
    ggml_set_name(embd, "embd");
    // setting a tensor as an input will ensure that it is allocated at the beginning of the graph
    // this is important to ensure that the input tensors are not overwritten before they are used
    ggml_set_input(embd);

    struct ggml_tensor *position = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, N);
    ggml_set_name(position, "position");
    ggml_set_input(position);

    // wte + wpe  输入张量+ 位置编码
    struct ggml_tensor *inpL =
        ggml_add(ctx,
                 ggml_get_rows(ctx, model.wte, embd),
                 ggml_get_rows(ctx, model.wpe, position));

    //遍历所有层向前计算
    for (int il = 0; il < n_layer; ++il)
    {
        struct ggml_tensor *cur;

        // norm  归一化层计算
        {
            // [ 768, N]
            cur = ggml_norm(ctx, inpL, hparams.eps);

            // cur = ln_1_g*cur + ln_1_b
            // [ 768, N]
            cur = ggml_add(ctx,
                           ggml_mul(ctx,
                                    cur,
                                    model.layers[il].ln_1_g),
                           model.layers[il].ln_1_b);
        }

        // attn
        // [2304, 768] - model.layers[il].c_attn_attn_w
        // [2304,   1] - model.layers[il].c_attn_attn_b
        // [ 768,   N] - cur (in)
        // [2304,   N] - cur (out)
        //
        // cur = attn_w*cur + attn_b
        // [2304, N]
        {
            cur = ggml_mul_mat(ctx,
                               model.layers[il].c_attn_attn_w,
                               cur);

            cur = ggml_add(ctx,
                           cur,
                           model.layers[il].c_attn_attn_b);
        }

        // self-attention  自注意力计算
        {
            struct ggml_tensor *Qcur = ggml_view_2d(ctx, cur, n_embd, N, cur->nb[1], 0 * sizeof(float) * n_embd);
            struct ggml_tensor *Kcur = ggml_view_2d(ctx, cur, n_embd, N, cur->nb[1], 1 * sizeof(float) * n_embd);
            struct ggml_tensor *Vcur = ggml_view_2d(ctx, cur, n_embd, N, cur->nb[1], 2 * sizeof(float) * n_embd);

            // store key and value to memory   k,v缓存到ggml后端设备内存
            if (N >= 1)
            {
                struct ggml_tensor *k = ggml_view_1d(ctx, model.memory_k, N * n_embd, (ggml_element_size(model.memory_k) * n_embd) * (il * n_ctx + n_past));
                struct ggml_tensor *v = ggml_view_1d(ctx, model.memory_v, N * n_embd, (ggml_element_size(model.memory_v) * n_embd) * (il * n_ctx + n_past));

                ggml_build_forward_expand(gf, ggml_cpy(ctx, Kcur, k));
                ggml_build_forward_expand(gf, ggml_cpy(ctx, Vcur, v));
            }

            // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
            // [64, N, 12]
            struct ggml_tensor *Q =
                ggml_permute(ctx,
                             ggml_cont_3d(ctx, Qcur, n_embd / n_head, n_head, N),
                             0, 2, 1, 3);

            // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
            // [64, n_past + N, 12]
            struct ggml_tensor *K =
                ggml_permute(ctx,
                             ggml_reshape_3d(ctx,
                                             ggml_view_1d(ctx, model.memory_k, (n_past + N) * n_embd, il * n_ctx * ggml_element_size(model.memory_k) * n_embd),
                                             n_embd / n_head, n_head, n_past + N),
                             0, 2, 1, 3);

            // GG: flash attention
            // struct ggml_tensor * V =
            //    ggml_cpy(ctx0,
            //            ggml_permute(ctx0,
            //                ggml_reshape_3d(ctx0,
            //                    ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),
            //                    n_embd/n_head, n_head, n_past + N),
            //                1, 2, 0, 3),
            //            ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_past + N, n_embd/n_head, n_head));

            // struct ggml_tensor * KQV = ggml_flash_attn(ctx0, Q, K, V, true);

            //计算K*Q
            // K * Q
            // [n_past + N, N, 12]
            struct ggml_tensor *KQ = ggml_mul_mat(ctx, K, Q);

            //计算K*Q缩放
            // KQ_scaled = KQ / sqrt(n_embd/n_head)
            // [n_past + N, N, 12]
            struct ggml_tensor *KQ_scaled =
                ggml_scale(ctx,
                           KQ,
                           1.0f / sqrtf(float(n_embd) / n_head));

            //计算KQ掩码
            // KQ_masked = mask_past(KQ_scaled)
            // [n_past + N, N, 12]
            struct ggml_tensor *KQ_masked = ggml_diag_mask_inf(ctx, KQ_scaled, n_past);

            // softmax计算
            // KQ = soft_max(KQ_masked)
            // [n_past + N, N, 12]
            struct ggml_tensor *KQ_soft_max = ggml_soft_max(ctx, KQ_masked);

            // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
            // [n_past + N, 64, 12]
            struct ggml_tensor *V_trans =
                ggml_cont_3d(ctx,
                             ggml_permute(ctx,
                                          ggml_reshape_3d(ctx,
                                                          ggml_view_1d(ctx, model.memory_v, (n_past + N) * n_embd, il * n_ctx * ggml_element_size(model.memory_v) * n_embd),
                                                          n_embd / n_head, n_head, n_past + N),
                                          1, 2, 0, 3),
                             n_past + N, n_embd / n_head, n_head);

            //值编码矩阵*KQ_soft_max
            // KQV = transpose(V) * KQ_soft_max
            // [64, N, 12]
            struct ggml_tensor *KQV = ggml_mul_mat(ctx, V_trans, KQ_soft_max);

            // KQV_merged = KQV.permute(0, 2, 1, 3)
            // [64, 12, N]
            struct ggml_tensor *KQV_merged = ggml_permute(ctx, KQV, 0, 2, 1, 3);

            // cur = KQV_merged.contiguous().view(n_embd, N)
            // [768, N]
            cur = ggml_cont_2d(ctx, KQV_merged, n_embd, N);
        }

        // projection  投影矩阵计算
        // [ 768, 768] - model.layers[il].c_attn_proj_w
        // [ 768,   1] - model.layers[il].c_attn_proj_b
        // [ 768,   N] - cur (in)
        // [ 768,   N] - cur (out)
        //
        // cur = proj_w*cur + proj_b
        // [768, N]
        {
            cur = ggml_mul_mat(ctx,
                               model.layers[il].c_attn_proj_w,
                               cur);

            cur = ggml_add(ctx,
                           cur,
                           model.layers[il].c_attn_proj_b);
        }

        // add the input   残差网络计算
        cur = ggml_add(ctx, cur, inpL);

        struct ggml_tensor *inpFF = cur;

        // feed-forward network  前馈网络
        {
            // norm  归一化
            {
                cur = ggml_norm(ctx, inpFF, hparams.eps);

                // cur = ln_2_g*cur + ln_2_b
                // [ 768, N]
                cur = ggml_add(ctx,
                               ggml_mul(ctx,
                                        cur,
                                        model.layers[il].ln_2_g),
                               model.layers[il].ln_2_b);
            }

            // fully connected  全连接
            // [3072, 768] - model.layers[il].c_mlp_fc_w
            // [3072,   1] - model.layers[il].c_mlp_fc_b
            // [ 768,   N] - cur (in)
            // [3072,   N] - cur (out)
            //
            // cur = fc_w*cur + fc_b
            // [3072, N]
            cur = ggml_mul_mat(ctx,
                               model.layers[il].c_mlp_fc_w,
                               cur);

            cur = ggml_add(ctx,
                           cur,
                           model.layers[il].c_mlp_fc_b);

            // GELU activation   激活函数
            // [3072, N]
            cur = ggml_gelu(ctx, cur);

            // projection    投影
            // [ 768, 3072] - model.layers[il].c_mlp_proj_w
            // [ 768,    1] - model.layers[il].c_mlp_proj_b
            // [3072,    N] - cur (in)
            // [ 768,    N] - cur (out)
            //
            // cur = proj_w*cur + proj_b
            // [768, N]
            cur = ggml_mul_mat(ctx,
                               model.layers[il].c_mlp_proj_w,
                               cur);

            cur = ggml_add(ctx,
                           cur,
                           model.layers[il].c_mlp_proj_b);
        }

        // input for next layer
        inpL = ggml_add(ctx, cur, inpFF);
    }

    // norm  归一化
    {
        // [ 768, N]
        inpL = ggml_norm(ctx, inpL, hparams.eps);

        // inpL = ln_f_g*inpL + ln_f_b
        // [ 768, N]
        inpL = ggml_add(ctx,
                        ggml_mul(ctx,
                                 inpL,
                                 model.ln_f_g),
                        model.ln_f_b);
    }

    // inpL = WTE * inpL
    // [ 768, 50257] - model.lm_head
    // [ 768, N]     - inpL
    inpL = ggml_mul_mat(ctx, model.lm_head, inpL);
    ggml_set_name(inpL, "logits");

    // setting a tensor as the output will ensure that it is not overwritten by subsequent operations
    // 设置一个张量作为输出将确保它不被后续操作覆盖
    ggml_set_output(inpL);

    // logits -> probs
    // inpL = ggml_soft_max(ctx0, inpL);

    ggml_build_forward_expand(gf, inpL);

    //释放ggml后端计算内存
    ggml_free(ctx);

    //返回计算图
    return gf;
}

// evaluate the transformer   使用计算图推理
//
//   - model:     the model
//   - allocr:    ggml_gallocr to use to allocate the compute buffer
//   - n_threads: number of threads to use
//   - n_past:    the context size so far
//   - embd_inp:  the embeddings of the tokens in the context
//   - embd_w:    the predicted logits for the next token
//
bool gpt2_eval(
    const gpt2_model &model,
    ggml_gallocr_t allocr,
    const int n_threads,
    const int n_past,
    const std::vector<gpt_vocab::id> &embd_inp,
    std::vector<float> &embd_w)
{
    //嵌入词汇表维度
    const int N = embd_inp.size();

    const auto &hparams = model.hparams;

    //词汇数量
    const int n_vocab = hparams.n_vocab;

    //创建计算图
    struct ggml_cgraph *gf = gpt2_graph(model, n_past, embd_inp.size());

    // allocate the graph tensors  分配计算图设备后端内存
    ggml_gallocr_alloc_graph(allocr, gf);

    // set the graph inputs  设置计算图输入张量
    struct ggml_tensor *embd = ggml_graph_get_tensor(gf, "embd");
    ggml_backend_tensor_set(embd, embd_inp.data(), 0, N * ggml_element_size(embd));

    //设置位置编码张量
    struct ggml_tensor *position = ggml_graph_get_tensor(gf, "position");
    for (int i = 0; i < N; ++i)
    {
        int32_t v = n_past + i;
        ggml_backend_tensor_set(position, &v, i * sizeof(int32_t), sizeof(v));
    }

    // set backend options 设置后端操作
    if (ggml_backend_is_cpu(model.backend))
    {
        ggml_backend_cpu_set_n_threads(model.backend, n_threads);
    }

#ifdef GGML_USE_METAL
    if (ggml_backend_is_metal(model.backend))
    {
        ggml_backend_metal_set_n_cb(model.backend, n_threads);
    }
#endif

    // run the computation  运行ggml后端计算图
    ggml_backend_graph_compute(model.backend, gf);

    // if (n_past%100 == 0) {
    //     ggml_graph_print   (&gf);
    //     ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");
    // }

    // get the graph outputs 获取计算图输出
    struct ggml_tensor *logits = ggml_graph_get_tensor(gf, "logits");

    // embd_w.resize(n_vocab*N);
    // ggml_backend_tensor_get(logits, embd_w.data(), 0, sizeof(float)*n_vocab*N);

    // return result just for the last token
    // 返回最后一个token作为结果,放在embd_w中
    embd_w.resize(n_vocab);
    ggml_backend_tensor_get(logits, embd_w.data(), (n_vocab * (N - 1)) * sizeof(float), sizeof(float) * n_vocab);

    return true;
}

int main(int argc, char **argv)
{
    ggml_time_init();

    const int64_t t_main_start_us = ggml_time_us();

    gpt_params params;
    params.model = "models/gpt-2-117M/ggml-model.bin";

    //解析命令行参数
    if (gpt_params_parse(argc, argv, params) == false)
    {
        return 1;
    }

    //设置随机数种子
    if (params.seed < 0)
    {
        params.seed = time(NULL);
    }

    printf("%s: seed = %d\n", __func__, params.seed);

    //随机提示
    std::mt19937 rng(params.seed);
    if (params.prompt.empty())
    {
        params.prompt = gpt_random_prompt(rng);
    }

    int64_t t_load_us = 0;

    gpt_vocab vocab;
    gpt2_model model;

    // load the model  加载模型
    {
        const int64_t t_start_us = ggml_time_us();

        if (!gpt2_model_load(params.model, model, vocab, params.n_ctx, params.n_gpu_layers))
        {
            fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
            return 1;
        }

        t_load_us = ggml_time_us() - t_start_us;

        test_gpt_tokenizer(vocab, params.token_test);
    }

    ggml_gallocr_t allocr = NULL;
    // allocate the compute buffer  分配计算缓存
    {
        // create a graph allocator with the backend's default buffer type
        allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(model.backend));

        // create the worst case graph for memory usage estimation
        int n_tokens = std::min(model.hparams.n_ctx, params.n_batch);
        int n_past = model.hparams.n_ctx - n_tokens;
        struct ggml_cgraph *gf = gpt2_graph(model, n_past, n_tokens);

        // pre-allocate the compute buffer for the worst case (optional)
        ggml_gallocr_reserve(allocr, gf);
        size_t mem_size = ggml_gallocr_get_buffer_size(allocr, 0);
        fprintf(stderr, "%s: compute buffer size: %.2f MB\n", __func__, mem_size / 1024.0 / 1024.0);
    }

    int n_past = 0;

    int64_t t_sample_us = 0;
    int64_t t_predict_us = 0;

    std::vector<float> logits;

    // tokenize the prompt 提示分词编码存到向量embd_inp中
    std::vector<gpt_vocab::id> embd_inp = ::gpt_tokenize(vocab, params.prompt);

   //根据输入的词汇数目和模型的上下文大小,确定了模型需要预测的标记数量
    params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int)embd_inp.size());

    //打印提示词和前8个提示词编码
    printf("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
    printf("%s: number of tokens in prompt = %zu, first 8 tokens: ", __func__, embd_inp.size());
    for (int i = 0; i < std::min(8, (int)embd_inp.size()); i++)
    {
        printf("%d ", embd_inp[i]);
    }
    printf("\n\n");

    // submit the input prompt token-by-token
    // this reduces the memory usage during inference, at the cost of a bit of speed at the beginning
    //逐个输入提示token,这减少了推理过程中的内存使用量,但代价是一开始速度有点慢
    std::vector<gpt_vocab::id> embd;

    //模型推理
    for (size_t i = embd.size(); i < embd_inp.size() + params.n_predict; i++)
    {
        // predict
        if (embd.size() > 0)
        {
            const int64_t t_start_us = ggml_time_us();
            //使用计算图推理
            if (!gpt2_eval(model, allocr, params.n_threads, n_past, embd, logits))
            {
                printf("Failed to predict\n");
                return 1;
            }

            t_predict_us += ggml_time_us() - t_start_us;
        }

        // 当前 上下文大小
        n_past += embd.size();
        embd.clear();

        // 预测位置i大于提示词大小, 采样下一个token
        if (i >= embd_inp.size())
        {
            // sample next token  
            const int top_k = params.top_k;
            const float top_p = params.top_p;
            const float temp = params.temp;

            const int n_vocab = model.hparams.n_vocab;

            gpt_vocab::id id = 0;

            {
                const int64_t t_start_sample_us = ggml_time_us();

                id = gpt_sample_top_k_top_p(vocab, logits.data() + (logits.size() - n_vocab), top_k, top_p, temp, rng);

                t_sample_us += ggml_time_us() - t_start_sample_us;
            }

            // add it to the context  采样结果添加到上下文
            embd.push_back(id);
        }
        else
        {
            //处理输入提示
            // if here, it means we are still processing the input prompt
            for (size_t k = i; k < embd_inp.size(); k++)
            {
                embd.push_back(embd_inp[k]);
                if (int32_t(embd.size()) >= params.n_batch)
                {
                    break;
                }
            }
            i += embd.size() - 1;
        }

        // display text  显示上下文结果
        for (auto id : embd)
        {
            printf("%s", vocab.id_to_token[id].c_str());
        }
        fflush(stdout);

        // end of text token
        if (!params.ignore_eos && embd.back() == 50256)
        {
            break;
        }
    }

    // report timing  打印耗时
    {
        const int64_t t_main_end_us = ggml_time_us();

        printf("\n\n");
        printf("%s:     load time = %8.2f ms\n", __func__, t_load_us / 1000.0f);
        printf("%s:   sample time = %8.2f ms\n", __func__, t_sample_us / 1000.0f);
        printf("%s:  predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us / 1000.0f, t_predict_us / 1000.0f / n_past);
        printf("%s:    total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us) / 1000.0f);
    }

    //释放资源
    
    ggml_free(model.ctx_w);

    ggml_gallocr_free(allocr);
    ggml_backend_buffer_free(model.buffer_w);
    ggml_backend_buffer_free(model.buffer_kv);
    ggml_backend_free(model.backend);

    return 0;
}