机器学习_SVM支持向量机

发布于:2024-06-20 ⋅ 阅读:(162) ⋅ 点赞:(0)

引入:在面对线性可分时,即用一条直线就可以区分数据的时候,需要将直线放在距离数据点距离最大化的位置,这个过程需要寻找最大间隔,即为最优化问题。当数据点不能用一根直线区分——线性不可分,就需要用核函数将数据点映射到高维空间运算得到超平面进行区分。

一、基本原理

1、概念

解决二分类问题,通过寻找最优决策面来对数据进行分类。

如下图,当分类(a)中的数据点时,(b)和(c)两种都能够正确分类,

但当数据点增加,(b)的分类结果明显好于(c)。显然,同一波数据有不同划分的决策面,但是需要让他的间隔最大从而找出最优决策面,即SVM的最优解。

2、重点名词解释

①超平面:将数据点划分为不同类别 —— 维度比当前空间维度低一维,eg二维数据下就是一条直线,三维空间内就是一个平面,n维数据就是n-1维。

②支持向量:位于间隔边界的数据点,即离分隔超平面最近的那些点。是最有可能被错误分类的数据点,直接影响超平面的位置和方向。

③最大间隔:距离是指支持向量到超平面的距离。SVM的目标不只是找到能够正确分类的超平面,还希望这个超平面能有最大间隔,从而让模型更具鲁棒性,不容易受噪声和异常点影响。

 3、核函数【针对线性不可分问题】

在解决如下图数据点线性不可分的情况下,映射到高维找到决策面。但是这里需要注意,他并不是在高维空间的数据点进行高维空间运算,核函数相当于一个小trick,通过实现在高维空间的效果下在原低维空间内进行运算,从而解决了高维空间内的计算成本。

二、SVM的数学建模

1)首先定义超平面为 w⋅x+b=0,则数据带你到超平面的距离为 \text{Distance}=\frac{|w\cdot x_i+b|}{||w||},而我们希望找到这样的超平面使得 y_i(w\cdot x_i+b)\geq1 —— 该表达式保证数据点位于超平面的正确一侧。

2)目标函数的优化问题:求解间隔最大化

\begin{aligned}\arg\max_{\boldsymbol{w},b}&\frac{2}{\|\boldsymbol{w}\|}\\\mathrm{s.t.}&y_i(\boldsymbol{w}^\top\boldsymbol{x}_i+b)\geq1, i=1,2,\ldots,m.\end{aligned} 

转化一下以下就是求解以下公式,该公式就是SVM的基本模型

  \begin{aligned}&\min_{w,b}\frac12||w||^2\\&\quad\mathrm{subject~to~}y_i(w\cdot x_i+b)\geq1,\forall i\end{aligned}

然后就是通过拉格朗日和对偶进行数学推导找到最优的w和b了,公式推导指路SVM公式推导

\max_{\alpha}\sum_{i=1}^{n}\alpha_{i}-\frac{1}{2}\sum_{i,j=1}^{n}\alpha_{i}\alpha_{j}y_{i}y_{j}\boldsymbol{x}_{i}^{\mathrm{T}}\boldsymbol{x}_{j}  &s.t.    \sum_{i=1}^n\alpha_iy_i=0 ,和  \alpha_{i}\geq0

因为所有的数据并不一定都是“干净”的(即可能存在噪声),因此在这里引入松弛变量 C,用于控制“最大化间隔”和“保证大部分点的函数间隔<1”的权重,允许有些数据点可以分错

约束条件变成 0<\alpha_i<C  和 \sum_{i=1}^n\alpha_iy_i=0

所以,SVM的主要工作就是求解这些 \alpha

三、SVM简单构造

1、准备数据

数据结构如下图

导入数据并进行可视化

import matplotlib.pyplot as plt
import numpy as np


def loadDataSet(fileName):
    dataMat = []; labelMat = []
    fr = open(fileName)
    for line in fr.readlines():                                     #逐行读取,滤除空格等
        lineArr = line.strip().split('\t')
        dataMat.append([float(lineArr[0]), float(lineArr[1])])      #添加数据
        labelMat.append(float(lineArr[2]))                          #添加标签
    return dataMat,labelMat


def showDataSet(dataMat, labelMat):
    data_plus = []                                  #正样本
    data_minus = []                                 #负样本
    for i in range(len(dataMat)):
        if labelMat[i] > 0:
            data_plus.append(dataMat[i])
        else:
            data_minus.append(dataMat[i])
    data_plus_np = np.array(data_plus)              #转换为numpy矩阵
    data_minus_np = np.array(data_minus)            #转换为numpy矩阵
    plt.scatter(np.transpose(data_plus_np)[0], np.transpose(data_plus_np)[1])   #正样本散点图
    plt.scatter(np.transpose(data_minus_np)[0], np.transpose(data_minus_np)[1]) #负样本散点图
    plt.show()

if __name__ == '__main__':
    dataMat, labelMat = loadDataSet('testSet.txt')
    showDataSet(dataMat, labelMat)

2、SVM 函数定义

class mySVM:
    def __init__(self, learning_rate=0.01, lambda_param=0.1, n_iters=1000):
        self.learning_rate = learning_rate
        self.lambda_param = lambda_param
        self.n_iters = n_iters
        self.w = None
        self.b = None

    def fit(self, X, y):
        n_samples, n_features = X.shape
        self.w = np.zeros(n_features)
        self.b = 0.0

        for _ in range(self.n_iters):
            linear_output = np.dot(X, self.w) - self.b
            errors = y - linear_output
            self.w -= self.learning_rate * (2 * self.lambda_param * self.w - np.dot(X.T, errors))
            self.b -= self.learning_rate * np.mean(errors)

    def predict(self, X):
        linear_output = np.dot(X, self.w) - self.b
        return np.sign(linear_output)

    def loss(self, X, y):
        linear_output = np.dot(X, self.w) - self.b
        hinge_loss = np.maximum(0, 1 - y * linear_output)
        reg_loss = self.lambda_param * np.linalg.norm(self.w)
        return np.mean(hinge_loss) + 0.5 * reg_loss

 3、绘制数据点和决策边界

# 可视化数据点和决策边界
def plot_show(X, y, svm):
    plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.coolwarm, s=20, edgecolor='k')
    
    # 创建一个网格
    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx, yy = np.meshgrid(np.linspace(x_min, x_max, 100), 
                         np.linspace(y_min, y_max, 100))
    
    # 计算决策边界,Z 是一个二维网格,表示每个点属于哪个类别
    Z = svm.predict(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    
    # 绘制决策边界
    plt.contourf(xx, yy, Z, alpha=0.4, cmap=plt.cm.coolwarm)
    plt.contour(xx, yy, Z, colors='k', linestyles='-', levels=[0])
    
    plt.xlabel('Feature 1')
    plt.ylabel('Feature 2')
    plt.title('SVM Decision Boundary')
    plt.show()

4、结果展示

# 主程序
if __name__ == "__main__":
    fileName = 'testSet.txt'  
    dataMat, labelMat = loadDataSet(fileName)
    
    # 实例化并训练SVM模型
    svm = mySVM(learning_rate=0.01, lambda_param=0.1, n_iters=1000)
    svm.fit(dataMat, labelMat)
    
    # 绘制决策边界
    plot_show(dataMat, labelMat, svm)

四、总结

上面用到的是线性SVM,但在实际应用中,需要处理更复杂的数据分布,例如使用核函数处理非线性可分的数据。此外,超参数的选择(如学习率、正则化参数和迭代次数)对模型性能有重要影响,还有松弛变量C对最后模型的训练效果也有很大影响(可能存在过拟合/欠拟合)

SVM的优缺点
  • 优点:高准确率,对高维数据有效等
  • 缺点:对核函数和参数选择敏感,计算复杂度高等


网站公告

今日签到

点亮在社区的每一天
去签到