Linux源码阅读笔记05-进程优先级与调度策略-实战分析

发布于:2024-06-24 ⋅ 阅读:(163) ⋅ 点赞:(0)

基础知识

  1. Linux 内核当中有 3 种调度策略:
    • SCHED_OTHER 分时调度策略;
    • SCHED_FIFO 实时调度策略,先到先服务;
    • SCHED_RR 实时调度策略,时间片轮转。

如果有相同优先级的实时进程(根据优先级计算的调度权值是一样的)已经准备好,FIFO 时必须等待该进程主动放弃之后才可以运行这个优先级相同的任务。而 RR 可以每个任务都执行一段时间。

  1. 获取线程设置的最高和最低优先级函数
    • int sched_get_priority_max(int policy)获取实时优先级的最大值;
    • int sched_get_priority_min(int policy)获取实时优先级的最小值;

SCHED_OTHER它 不 支 持 优 先 级 使 用 , 而SCHED_RR/SCHED_FIFO 支持优先级使用,它们分别为 1-99,数值越大优先级越高。

实时调度策略(SCHED_FIFO/SCHED_RR)优先级最大值为99;普通调度策略
(SCHED_NORMAL/SCHED_BATCH/SCHED_IDLE),始终返回0,即普通任务调度的函数。

  1. 设置和获取优先级的2个主要核心参数

    • int pthread_attr_setschedparam(pthread_attr_t* attr, const struct sched_param* param);设置线程优先级;
    • int pthread_attr_getschedparam(pthread_attr_t* attr, const struct sched_param* param);获取线程优先级;
    struct sched_param {
        int __sched_priority; // 所有设定的线程优先级
    }
    
    param.sched_priority = 11; // 设置优先级
    
  2. 当操作系统创建线程时,默认线程是 SCHED_OTHER,我们也可以通过改变调度策略,使用如下函数:

    • int pthread_attr_setschedpolicy(pthread_attr_t* attr, int policy);设置线程调度策略;

基础案例分析

  1. 操作系统所支持优先级测试程序分析:
#include <stdio.h>
#include <pthread.h>
#include <sched.h>
#include <assert.h>

static int GetThreadPolicyFunc(pthread_attr_t *pAttr)
{
    int iPlicy;
    int igp=pthread_attr_getschedpolicy(pAttr,&iPlicy);

    assert(igp==0);

    switch (iPlicy)
    {
    case SCHED_FIFO:
        printf("Policy is --> SCHED_FIFO.\n");
        break;

    case SCHED_RR:
        printf("Policy is --> SCHED_RR.\n");
        break;

    case SCHED_OTHER:
        printf("Policy is --> SCHED_OTHER.\n");
        break;
    
    default:
    printf("Policy is --> Unknown.\n");
        break;
    }

    return iPlicy;
}

static void PrintThreadPriorityFunc(pthread_attr_t *pAttr,int iPolicy)
{
    int iPriority=sched_get_priority_max(iPolicy); 
    assert(iPriority!=-1);
    printf("Max_priority is : %d\n",iPriority);

    iPriority=sched_get_priority_min(iPolicy); 
    assert(iPriority!=-1);
    printf("Min_priority is : %d\n",iPriority);
}

static int GetThreadPriorityFunc(pthread_attr_t *pAttr)
{
    struct sched_param sParam;
    int irs=pthread_attr_getschedparam(pAttr,&sParam);

    assert(irs==0);

    printf("Priority=%d\n",sParam.__sched_priority);

    return sParam.__sched_priority;
}

static void SetThreadPolicyFunc(pthread_attr_t *pAttr,int iPolicy)
{
    int irs=pthread_attr_setschedpolicy(pAttr,iPolicy);

    assert(irs==0);

    GetThreadPolicyFunc(pAttr);
}

int main(int argc,char *argv[])
{
    pthread_attr_t pAttr;
    struct sched_param sched;

    int irs=pthread_attr_init(&pAttr);
    assert(irs==0);

    int iPlicy=GetThreadPolicyFunc(&pAttr);

    printf("\nExport current Configuration of priority.\n");
    PrintThreadPriorityFunc(&pAttr,iPlicy);

    printf("\nExport SCHED_FIFO of prioirty.\n");
    PrintThreadPriorityFunc(&pAttr,SCHED_FIFO);

    printf("\nExport SCHED_RR of prioirty.\n");
    PrintThreadPriorityFunc(&pAttr,SCHED_RR);


    printf("\nExport priority of current thread.\n");
    int iPriority=GetThreadPriorityFunc(&pAttr);
    printf("Set thread policy.\n");

    printf("\nSet SCHED_FIFO policy.\n");
    SetThreadPolicyFunc(&pAttr,SCHED_FIFO);

    printf("\nSet SCHED_RR policy.\n");
    SetThreadPolicyFunc(&pAttr,SCHED_RR);

    printf("\nRestore current policy.\n");
    SetThreadPolicyFunc(&pAttr,iPlicy);

    irs=pthread_attr_destroy(&pAttr);
    assert(irs==0);

    return 0;
}

  1. 简单线程调度策略,我们创建三个线程,默认创建的线程它的调度策略为SCHED_OTHER,另外两个线程调度策略为 SCHED_RR/FIFO:
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <pthread.h>

void ThreadFunc1() {

    sleep(1);
    int i, j;
    int policy;
    struct sched_param param;

    pthread_getschedparam(pthread_self(), &policy, &param);

    switch (policy) {
    case SCHED_OTHER:
        printf("SCHED_OTHER\n");
        break;
    case SCHED_FIFO:
        printf("SCHED_FIFO\n");
    case SCHED_RR:
        printf("SCHED_RR Thread1\n");
    default:
        break;
    }

    for(i = 1; i <= 5; i++){
        for(j = 1; j <= 5000000; j++){}
        printf("Execute thread function 1.\n");
    }

    printf("ThreadFunc1 Exit\n");
}

void ThreadFunc2() {

    sleep(2);
    int policy;
    struct sched_param param;

    pthread_getschedparam(pthread_self(), &policy, &param);

    switch(policy) {

    case SCHED_OTHER:
        printf("SCHED_OTHER\n");
        break;
    case SCHED_FIFO:
        printf("SCHED_FIFO\n");
        break;
    case SCHED_RR:
        printf("SCHED_RR Thread2");
        break;
    }

    for(int i = 1; i <= 6; i++){
        for(int j = 1; j <= 6000000; j++){}
        printf("Execute thread function 2.\n");
    }

    printf("ThreadFunc2 Exit\n");
}

void ThreadFunc3() {

    sleep(3);
    int policy;
    struct sched_param param;

    pthread_getschedparam(pthread_self(), &policy, &param);

    switch(policy) {

    case SCHED_OTHER:
        printf("SCHED_OTHER\n");
        break;
    case SCHED_FIFO:
        printf("SCHED_FIFO\n");
        break;
    case SCHED_RR:
        printf("SCHED_RR\n");
        break;
    }

    for(int i = 1; i <= 7; i++) {

        for(int j = 0; j <= 7000000; j++){}
        printf("Execute thread function 3.\n");
    }

    printf("ThreadFunc3 Exit\n");
}

int main(int argc, char* argv[]) {

    int i = 0;
    i = getuid();

    if(i == 0) {

        printf("The current user is root.\n\n");
    }
    else {

        printf("The current user is not root.\n\n");
    }

    pthread_t pid1, pid2, pid3;
    struct sched_param param;
    pthread_attr_t attr1, attr2, attr3;

    pthread_attr_init(&attr1);
    pthread_attr_init(&attr2);
    pthread_attr_init(&attr3);

    param.sched_priority = 31;
    pthread_attr_setschedpolicy(&attr2, SCHED_RR);
    pthread_attr_setschedparam(&attr2, &param);
    pthread_attr_setinheritsched(&attr2, PTHREAD_EXPLICIT_SCHED);

    param.sched_priority = 11;
    pthread_attr_setschedpolicy(&attr1, SCHED_FIFO);
    pthread_attr_setschedparam(&attr1, &param);
    pthread_attr_setinheritsched(&attr1, PTHREAD_EXPLICIT_SCHED);

    pthread_create(&pid3, &attr3, (void*)ThreadFunc3, NULL);
    pthread_create(&pid2, &attr2, (void*)ThreadFunc2, NULL);
    pthread_create(&pid1, &attr1, (void*)ThreadFunc1, NULL);

    pthread_join(pid3, NULL);
    pthread_join(pid2, NULL);
    pthread_join(pid1, NULL);

    pthread_attr_destroy(&attr3);
    pthread_attr_destroy(&attr2);
    pthread_attr_destroy(&attr1);

    return 0;
}
  • 超级用户运行


网站公告

今日签到

点亮在社区的每一天
去签到