// 创建一个固定大小的线程池 ExecutorService executorService = Executors.newFixedThreadPool(5); // 创建多个查询任务 List<Callable<List<ShopCompareBase>>> tasks = new ArrayList<>(); //查询门店 切割,分成十份 List<List<String>> shopIdList = averageAssign(reqShopCodes, 10); if (CollectionUtils.isNotEmpty(shopIdList)) { for (List<String> list : shopIdList) { if (CollectionUtils.isNotEmpty(list)) { //xgj->映射门店id Map<String, List<String>> var1 = list.stream() .filter(storeIdMap::containsKey) // 过滤掉不存在的 key .collect(Collectors.toMap(key -> key, storeIdMap::get)); //三方映射门店id List<String> idList = var1.values().stream() .flatMap(List::stream) // 将每个 List<String> 扁平化为 Stream<String> .collect(Collectors.toList()); if (CollectionUtils.isEmpty(idList)) { continue; } //转换大数据orgCode List<String> shopIds = dimMchtHllShopDfService.convertShopId2OrgCode(idList, new ArrayList<>()); BusinessDataTendencyRequest req = new BusinessDataTendencyRequest(); BeanUtils.copyProperties(request, req); req.setShopIDs(shopIds); storeRankList.addAll(getStoreRank(req)); Long t1 = System.currentTimeMillis(); log.info("getRealTimeDateBatchQuery.start:{}", System.currentTimeMillis()); //多任务执行 tasks.add(()-> { StoreBusinessContrastReqDto storeBusinessContrastReqDto = new StoreBusinessContrastReqDto(); BeanUtils.copyProperties(request, storeBusinessContrastReqDto); storeBusinessContrastReqDto.setShopIDs(shopIds); return hisOrderRealTimeDataService.getRealTimeDateBatchQuery(dataType, storeBusinessContrastReqDto, request.getIsHomepage()); }); Long t2 = System.currentTimeMillis(); log.info("getRealTimeDateBatchQuery.end 耗时:{}s", (t2 - t1) / 1000.0); } } } try { // 提交所有任务并等待它们完成 List<Future<List<ShopCompareBase>>> futures = executorService.invokeAll(tasks); // 获取每个任务的结果 for (Future<List<ShopCompareBase>> future : futures) { shopCompareBaseList.addAll(future.get()); } } catch (InterruptedException | ExecutionException e) { e.printStackTrace(); } finally { // 关闭线程池 executorService.shutdown(); } }
/** * 将一个list均分成n个list,主要通过偏移量来实现的 * * @param source * @return */ public static <T> List<List<T>> averageAssign(List<T> source, int n) { if(CollectionUtils.isEmpty(source)) return null; List<List<T>> result = new ArrayList<List<T>>(); int remaider = source.size() % n; //(先计算出余数) int number = source.size() / n; //然后是商 int offset = 0;//偏移量 for (int i = 0; i < n; i++) { List<T> value = null; if (remaider > 0) { value = source.subList(i * number + offset, (i + 1) * number + offset + 1); remaider--; offset++; } else { value = source.subList(i * number + offset, (i + 1) * number + offset); } result.add(value); } return result; }