LC串联带初始值的时域表达式

发布于:2025-03-06 ⋅ 阅读:(66) ⋅ 点赞:(0)

LC串联,在t0时刻接入直流电压 U i n U_{in} Uin
电感电流 i ( t ) i(t) i(t)和电容电压 u c ( t ) u_c(t) uc(t)的时域表达式可通过二阶微分方程求解。以下是推导过程与结果:

1. 微分方程建立

电感 L L L与电容 C C C串联,接入直流电压源 U in U_{\text{in}} Uin。根据基尔霍夫电压定律 K V L KVL KVL,有:

U in = L d i d t + u c U_{\text{in}} = L \frac{di}{dt} + u_c Uin=Ldtdi+uc

i = C d u c d t i = C \frac{du_c}{dt} i=Cdtduc

2. 化简为二阶微分方程

i = C d u c d t i = C \frac{du_c}{dt} i=Cdtduc 代入 KVL 方程,消去 i i i
U in = L d d t ( C d u c d t ) + u c U_{\text{in}} = L \frac{d}{dt}\left(C \frac{du_c}{dt}\right) + u_c Uin=Ldtd(Cdtduc)+uc

整理后得到二阶方程:
L C d 2 u c d t 2 + u c = U in LC \frac{d^2u_c}{dt^2} + u_c = U_{\text{in}} LCdt2d2uc+uc=Uin


3. 求解微分方程

齐次方程通解

齐次方程 L C u c ′ ′ + u c = 0 LC u_c'' + u_c = 0 LCuc′′+uc=0的通解为振荡形式:

u c (hom) ( t ) = A cos ⁡ ( ω t ) + B sin ⁡ ( ω t ) u_c^{\text{(hom)}}(t) = A \cos(\omega t) + B \sin(\omega t) uc(hom)(t)=Acos(ωt)+Bsin(ωt)
其中谐振角频率:
ω = 1 L C \omega = \frac{1}{\sqrt{LC}} ω=LC 1

非齐次方程特解

设特解为常数 u c (p) = U in u_c^{\text{(p)}} = U_{\text{in}} uc(p)=Uin。代入方程:
L C ⋅ 0 + U in = U in LC \cdot 0 + U_{\text{in}} = U_{\text{in}} LC0+Uin=Uin
成立,即特解有效。

通解与初始条件

电容电压的总解为:
u c ( t ) = U in ⏟ 特解 + A cos ⁡ ( ω t ) + B sin ⁡ ( ω t ) ⏟ 齐次解 u_c(t) = \underbrace{U_{\text{in}}}_{\text{特解}} + \underbrace{A \cos(\omega t) + B \sin(\omega t)}_{\text{齐次解}} uc(t)=特解 Uin+齐次解 Acos(ωt)+Bsin(ωt)

利用初始条件 u c ( 0 ) = u 0 u_c(0) = u_0 uc(0)=u0 i ( 0 ) = i 0 i(0) = i_0 i(0)=i0

  1. 代入 t = 0 t = 0 t=0
    u c ( 0 ) = U in + A = u 0    ⟹    A = u 0 − U in u_c(0) = U_{\text{in}} + A = u_0 \implies A = u_0 - U_{\text{in}} uc(0)=Uin+A=u0A=u0Uin

  2. 求导求初始电流
    d u c d t = − ω A sin ⁡ ( ω t ) + ω B cos ⁡ ( ω t ) \frac{du_c}{dt} = -\omega A \sin(\omega t) + \omega B \cos(\omega t) dtduc=ωAsin(ωt)+ωBcos(ωt)

i ( 0 ) = C ⋅ d u c d t ∣ t = 0 = C ω B = i 0    ⟹    B = i 0 C ω = i 0 L C i(0) = C \cdot \left.\frac{du_c}{dt}\right|_{t=0} = C \omega B = i_0 \implies B = \frac{i_0}{C \omega} = i_0 \sqrt{\frac{L}{C}} i(0)=Cdtduc t=0=CωB=i0B=Cωi0=i0CL


4. 最终表达式

电容电压

u c ( t ) = U in + ( u 0 − U in ) cos ⁡ ( ω t ) + i 0 L C sin ⁡ ( ω t ) u_c(t) = U_{\text{in}} + (u_0 - U_{\text{in}})\cos(\omega t) + i_0 \sqrt{\frac{L}{C}} \sin(\omega t) uc(t)=Uin+(u0Uin)cos(ωt)+i0CL sin(ωt)

电感电流

u c ( t ) u_c(t) uc(t)求导并乘以 C C C
i ( t ) = C d u c d t = − C ω ( u 0 − U in ) sin ⁡ ( ω t ) + i 0 cos ⁡ ( ω t ) i(t) = C \frac{du_c}{dt} = -C \omega (u_0 - U_{\text{in}})\sin(\omega t) + i_0 \cos(\omega t) i(t)=Cdtduc=Cω(u0Uin)sin(ωt)+i0cos(ωt)

ω = 1 L C \omega = \frac{1}{\sqrt{LC}} ω=LC 1代入后化简:
i ( t ) = − u 0 − U in L C sin ⁡ ( ω t ) + i 0 cos ⁡ ( ω t ) i(t) = -\frac{u_0 - U_{\text{in}}}{\sqrt{\frac{L}{C}}} \sin(\omega t) + i_0 \cos(\omega t) i(t)=CL u0Uinsin(ωt)+i0cos(ωt)


网站公告

今日签到

点亮在社区的每一天
去签到