基于opencv-4.11.0实现
包括滑动窗口动态阈值 + 阈值范围 + 开操作 + 闭操作 + 连通域提取和分析
关键代码如下
cv::Mat mask;
cv::Mat cvimage(image->Height, image->Width, CV_8UC1, image->Data);
Boundingbox2D box = RegionToMat(region, mask);
cv::Rect roi_rect = cv::Rect(box.MinX, box.MinY, box.Width(), box.Height());
cv::Mat src = cvimage(roi_rect).clone();
mask = mask(roi_rect).clone();
cv::Mat mask_low_high;
cv::Mat mask_adj_thresh;
adaptiveThreshold(src, mask_adj_thresh, windX, windY, (minThreshold < 0));
if (minThreshold < 0)
{
inRange(src, cv::Scalar(255 + minThreshold), cv::Scalar(255 + maxThreshold), mask_low_high);
//inRange(src, cv::Scalar(-maxThreshold), cv::Scalar(-minThreshold), mask_low_high);
}
else
{
inRange(src, cv::Scalar(minThreshold), cv::Scalar(maxThreshold), mask_low_high);
}
cv::Mat intersection;
cv::bitwise_and(mask_low_high, mask_adj_thresh, intersection);
cv::bitwise_and(mask, intersection, mask);
// 定义结构元素(核)
cv::Mat open_kernel = cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(2 * openX - 1, 2 * openY - 1));
cv::Mat close_kernel = cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(2 * closeX - 1, 2 * closeY - 1));
// 开运算(先腐蚀后膨胀)
cv::Mat opened;
cv::morphologyEx(mask, opened, cv::MORPH_OPEN, open_kernel);
// 闭运算(先膨胀后腐蚀)
cv::Mat closed;
cv::morphologyEx(opened, closed, cv::MORPH_CLOSE, close_kernel);
// 连通域分析
cv::Mat labels, stats, centroids;
int num_objects = connectedComponentsWithStats(closed, labels, stats, centroids);
// 使用map存储每个连通域的所有像素位置
std::map<int, std::vector<cv::Point>> component_pixels;
// 遍历labels矩阵,收集每个连通域的像素位置
for (int y = 0; y < labels.rows; y++) {
for (int x = 0; x < labels.cols; x++) {
int label = labels.at<int>(y, x);
if (label > 0) { // 忽略背景
component_pixels[label].emplace_back(x, y);
}
}
}
speckleRegionsCount = 0;
cv::Mat final = cv::Mat::zeros(closed.size(), CV_8UC1);
for (auto component : component_pixels)
{
if (component.second.size() > minArea)
{
speckleRegionsCount++;
for (int i = 0;i < component.second.size();i++)
{
final.at<uchar>(component.second[i]) = 255;
}
}
}
// Otsu 阈值算法实现
int otsuThreshold(const cv::Mat& image)
{
// 计算灰度直方图
int hist[256] = { 0 };
for (int y = 0; y < image.rows; y++) {
for (int x = 0; x < image.cols; x++) {
hist[image.at<uchar>(y, x)]++;
}
}
int totalPixels = image.rows * image.cols;
float sum = 0;
for (int i = 0; i < 256; i++) {
sum += i * hist[i];
}
float sumB = 0; // 背景像素的加权和
int wB = 0; // 背景像素数量
int wF = 0; // 前景像素数量
float maxVariance = 0;
int threshold = 0;
for (int t = 0; t < 256; t++) {
wB += hist[t]; // 背景像素数量累积
if (wB == 0) continue; // 避免除以 0
wF = totalPixels - wB; // 前景像素数量
if (wF == 0) break; // 所有像素已分配
sumB += t * hist[t]; // 背景像素的加权和
float meanB = sumB / wB; // 背景均值
float meanF = (sum - sumB) / wF; // 前景均值
// 计算类间方差
float variance = (float)wB * (float)wF * (meanB - meanF) * (meanB - meanF);
// 更新最佳阈值
if (variance > maxVariance) {
maxVariance = variance;
threshold = t;
}
}
return threshold;
}
// 动态阈值二值化实现
void adaptiveThreshold(const cv::Mat& inputImage,
cv::Mat& outputImage,
int windX,
int windY,
bool detectDark = false
)
{
int rows = inputImage.rows;
int cols = inputImage.cols;
// 确保输出图像大小一致
outputImage = cv::Mat::zeros(inputImage.size(), CV_8UC1);
// 遍历每个像素
#pragma omp parallel for
for (int y = 0; y < rows; ++y)
{
const uchar* prow_data = inputImage.ptr<uchar>(y);
uchar* pout = outputImage.ptr<uchar>(y);
for (int x = 0; x < cols; ++x)
{
// 计算局部区域的边界
int halfSizeX = windX / 2;
int halfSizeY = windY / 2;
int startX = (std::max)(0, x - halfSizeX);
int endX = (std::min)(cols - 1, x + halfSizeX);
int startY = (std::max)(0, y - halfSizeY);
int endY = (std::min)(rows - 1, y + halfSizeY);
auto thresh = otsuThreshold(inputImage(cv::Rect(startX, startY, endX - startX + 1, endY - startY + 1)));
// 根据动态阈值进行二值化
if ((prow_data[x] > thresh && !detectDark) || (prow_data[x] < static_cast<uchar>(thresh * 0.8) && detectDark))
{
pout[x] = 255; // 前景
}
}
}
}