二元高次方程
EquationSolver20250509.java
package math;
import org.apache.commons.math3.analysis.MultivariateFunction;
import org.apache.commons.math3.optim.InitialGuess;
import org.apache.commons.math3.optim.MaxEval;
import org.apache.commons.math3.optim.PointValuePair;
import org.apache.commons.math3.optim.nonlinear.scalar.GoalType;
import org.apache.commons.math3.optim.nonlinear.scalar.ObjectiveFunction;
import org.apache.commons.math3.optim.nonlinear.scalar.noderiv.NelderMeadSimplex;
import org.apache.commons.math3.optim.nonlinear.scalar.noderiv.SimplexOptimizer;
// 二元高次方程
// author zengwenfeng
// date 2025.05.09
public class EquationSolver20250509
{
// 定义目标函数:f(a,y) = [(a + 2y - 1)^3 - a*y^3 - 1]^2
static class EquationFunction implements MultivariateFunction
{
@Override
public double value(double[] point)
{
double a = point[0];
double y = point[1];
double expr = Math.pow(a + 2 * y - 1, 3) - a * Math.pow(y, 3) - 1;
return expr * expr; // 最小化平方误差
}
}
public static void main(String[] args)
{
// 创建优化器
SimplexOptimizer optimizer = new SimplexOptimizer(1e-10, 1e-12);
// 定义目标函数
MultivariateFunction function = new EquationFunction();
// 设置优化参数
int maxEvaluations = 10000;
// 尝试不同的初始猜测点来寻找多个解
double[][] initialGuesses =
{
{1.0, 1.0}, // 初始猜测点1
{0.5, 0.5}, // 初始猜测点2
{2.0, -1.0}, // 初始猜测点3
{5.0, 2.0}, // 初始猜测点4
{0.0, 0.0} // 初始猜测点5
};
System.out.println("寻找方程 (a + 2y - 1)^3 - a*y^3 = 1 的解:");
for (int i = 0; i < initialGuesses.length; i++)
{
double[] guess = initialGuesses[i];
try
{
// 执行优化
PointValuePair result = optimizer.optimize(new MaxEval(maxEvaluations), new ObjectiveFunction(function), GoalType.MINIMIZE, new InitialGuess(guess), new NelderMeadSimplex(2) // 二维问题
);
double[] solution = result.getPoint();
double a = solution[0];
double y = solution[1];
double error = result.getValue();
// 只输出误差足够小的解
if (error < 1e-8)
{
System.out.printf("解 %d: a = %.8f, y = %.8f, 误差 = %.10f%n", i + 1, a, y, error);
// 验证解的正确性
double expr = Math.pow(a + 2 * y - 1, 3) - a * Math.pow(y, 3);
System.out.printf("验证: (a + 2y - 1)^3 = %.8f, 1 + a*y^3 = %.8f%n", Math.pow(a + 2 * y - 1, 3), 1 + a * Math.pow(y, 3));
}
else
{
System.out.printf("初始猜测点 [%f, %f] 未能找到有效解,误差 = %.10f%n", guess[0], guess[1], error);
}
}
catch (Exception e)
{
System.out.printf("初始猜测点 [%f, %f] 求解过程中出错: %s%n", guess[0], guess[1], e.getMessage());
}
}
}
}