【字节拥抱开源】字节豆包团队开源首发 Seed-Coder 大模型

发布于:2025-05-10 ⋅ 阅读:(10) ⋅ 点赞:(0)

我们非常高兴地向大家介绍 Seed-Coder,它是一个功能强大、透明、参数高效的 8B 级开源代码模型系列,包括基础变体、指导变体和推理变体。Seed-Coder 通过以下亮点促进开放代码模型的发展。

  • 以模型为中心:Seed-Coder主要利用大语言模型(LLMs)而非手工规则进行代码数据过滤,最大限度地减少了预训练数据构建中的人工工作量。
  • 透明:我们公开分享了以模型为核心的数据管道的详细见解,包括整理GitHub数据、提交数据和代码相关网络数据的方法。
  • 强大:Seed-Coder在多种编码任务中,在同等规模的开源模型中实现了最先进的性能。

在这里插入图片描述

Seed-Coder-8B-Base 模型,具备以下特征:

  • 类型:因果语言模型
  • 训练阶段:预训练
  • 数据来源:GitHub 数据、代码相关网络数据
  • 训练标记:6 万亿
  • 支持功能:代码补全、代码填充(中间填充)
  • 上下文长度:32,768

代码示例

您需要安装最新版本的 transformers accelerate

pip install -U transformers accelerate

这是一个简单的示例,展示了如何使用 Hugging Face 的 pipeline API 加载模型并执行代码生成:

import transformers
import torch

model_id = "ByteDance-Seed/Seed-Coder-8B-Base"

pipeline = transformers.pipeline(
    "text-generation",
    model=model_id,
    model_kwargs={"torch_dtype": torch.bfloat16},
    device_map="auto",
)

output = pipeline("def say_hello_world():", max_new_tokens=100)
print(output[0]["generated_text"])

填充中间部分(FIM)示例
Seed-Coder-8B-Base 原生支持 填充中间部分(FIM) 任务,即模型被提供一个前缀和一个后缀,并要求预测缺失的中间内容。这使得在代码填充场景中,如完成函数体或在两段代码之间插入缺失的逻辑成为可能。

import transformers
import torch

model_id = "ByteDance-Seed/Seed-Coder-8B-Base"

pipeline = transformers.pipeline(
    "text-generation",
    model=model_id,
    model_kwargs={"torch_dtype": torch.bfloat16},
    device_map="auto",
)

# You can concatenate a prefix, a special FIM separator token, and a suffix
prefix = "def add_numbers(a, b):\n    "
suffix = "\n    return result"

# Combine prefix and suffix following the FIM format
fim_input = '<[fim-suffix]>' + suffix + '<[fim-prefix]>' + prefix + '<[fim-middle]>'

output = pipeline(fim_input, max_new_tokens=512)
print(output[0]["generated_text"])

评估

Seed-Coder-8B-Base 在代码生成、代码补全和代码推理基准测试中进行了评估,在约 8B 的开源模型中实现了最先进的性能。

DeepSeek-Coder-6.7B-Base OpenCoder-8B-Base Qwen2.5-Coder-7B Seed-Coder-8B-Base
HumanEval 47.6 66.5 72.0 77.4
MBPP 70.2 79.9 79.4 82.0
MultiPL-E 44.7 61.0 58.8 67.6
cruxeval-O 41.0 43.9 56.0 48.4

Seed-Coder-8B-Instruct 模型,具有以下特点:

  • 类型:因果语言模型
  • 训练阶段:预训练与后训练
  • 数据来源:公共数据集、合成数据
  • 上下文长度:32,768

代码示例
您需要安装最新版本的 transformers accelerate

pip install -U transformers accelerate

这是一个简单的示例,展示了如何使用 Hugging Face 的 pipeline API 加载模型并执行代码生成:

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_id = "ByteDance-Seed/Seed-Coder-8B-Instruct"

tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True)

messages = [
    {"role": "user", "content": "Write a quick sort algorithm."},
]

input_ids = tokenizer.apply_chat_template(
    messages,
    tokenize=True,
    return_tensors="pt",
    add_generation_prompt=True,  
).to(model.device)

outputs = model.generate(input_ids, max_new_tokens=512)
response = tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True)
print(response)

评估

Seed-Coder-8B-Instruct 在广泛的编码任务中进行了评估,包括代码生成、代码推理、代码编辑和软件工程,在约 8B 的开源模型中实现了最先进的性能。

Model HumanEval MBPP MHPP BigCodeBench (Full) BigCodeBench (Hard) LiveCodeBench (2410 – 2502)
CodeLlama-7B-Instruct 40.9 54.0 6.7 21.9 3.4 3.6
DeepSeek-Coder-6.7B-Instruct 74.4 74.9 20.0 35.5 10.1 9.6
CodeQwen1.5-7B-Chat 83.5 77.7 17.6 39.6 18.9 3.0
Yi-Coder-9B-Chat 82.3 82.0 26.7 38.1 11.5 17.5
Llama-3.1-8B-Instruct 68.3 70.1 17.1 36.6 13.5 11.5
OpenCoder-8B-Instruct 83.5 79.1 30.5 40.3 16.9 17.1
Qwen2.5-Coder-7B-Instruct 88.4 82.0 26.7 41.0 18.2 17.3
Qwen3-8B 84.8 77.0 32.8 51.7 23.0 23.5
Seed-Coder-8B-Instruct 84.8 85.2 36.2 53.3 20.5 24.7

Seed-Coder-8B-Reasoning 模型,具有以下特点:

  • 类型:因果语言模型
  • 训练阶段:预训练与后训练
  • 数据来源:公共数据集
  • 上下文长度:32,768

代码示例
您需要安装最新版本的 transformers accelerate

pip install -U transformers accelerate

这是一个简单的示例,展示了如何使用 Hugging Face 的 pipeline API 加载模型并执行代码生成:

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_id = "ByteDance-Seed/Seed-Coder-8B-Reasoning"

tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True)

messages = [
    {"role": "user", "content": "Write a quick sort algorithm."},
]

input_ids = tokenizer.apply_chat_template(
    messages,
    tokenize=True,
    return_tensors="pt",
    add_generation_prompt=True,  
).to(model.device)

outputs = model.generate(input_ids, max_new_tokens=16384)
response = tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True)
print(response)

评估

Seed-Coder-8B-Reasoning 在竞争性编程中表现出色,表明较小的语言模型也能在复杂推理任务中胜任。我们的模型在 IOI’2024 上超越了 QwQ-32B 和 DeepSeek-R1,并在 Codeforces 竞赛中取得了与 o1-mini 相当的 ELO 评分。

在这里插入图片描述
在这里插入图片描述
有关详细的基准性能,请参阅我们的📑 技术报告.


网站公告

今日签到

点亮在社区的每一天
去签到