ResNet残差神经网络的模型结构定义(pytorch实现)

发布于:2025-05-14 ⋅ 阅读:(15) ⋅ 点赞:(0)

ResNet残差神经网络的模型结构定义(pytorch实现)

ResNet‑34

在这里插入图片描述

ResNet‑34的实现思路。核心在于:

  1. 定义残差块(BasicBlock)
  2. _make_layer 方法堆叠多个残差块
  3. 按照 ResNet‑34 的通道和层数配置来搭建网络

import torch
import torch.nn as nn
import torch.nn.functional as F

class BasicBlock(nn.Module):
    expansion = 1  # 对于 BasicBlock,输出通道 = base_channels * expansion

    def __init__(self, in_channels, out_channels, stride=1):
        super().__init__()
        # 第一个 3×3 卷积
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3,
                               stride=stride, padding=1, bias=False)
        self.bn1   = nn.BatchNorm2d(out_channels)
        # 第二个 3×3 卷积
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3,
                               stride=1, padding=1, bias=False)
        self.bn2   = nn.BatchNorm2d(out_channels)

        # 如果输入输出通道或下采样不一致,则用 1×1 卷积做一下“shortcut”
        self.shortcut = nn.Sequential()
        if stride != 1 or in_channels != out_channels * BasicBlock.expansion:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_channels, out_channels * BasicBlock.expansion,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(out_channels * BasicBlock.expansion)
            )

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))
        # 残差连接
        out += self.shortcut(x)
        return F.relu(out)

class ResNet(nn.Module):
    def __init__(self, block, layers, num_classes=1000):
        """
        block:       残差块类型(BasicBlock 或 Bottleneck)
        layers:      每个 stage 包含多少个 block,例如 [3, 4, 6, 3] 对应 ResNet‑34
        num_classes: 最后分类数
        """
        super().__init__()
        self.in_channels = 64

        # Stem:7×7 conv + maxpool
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7,
                               stride=2, padding=3, bias=False)
        self.bn1   = nn.BatchNorm2d(64)
        self.pool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        # 四个 stage,通道分别是 [64,128,256,512]
        self.layer1 = self._make_layer(block, 64,  layers[0], stride=1)
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)

        # 全局平均池化 + 全连接
        self.avgpool = nn.AdaptiveAvgPool2d((1,1))
        self.fc      = nn.Linear(512 * block.expansion, num_classes)

    def _make_layer(self, block, out_channels, num_blocks, stride):
        """
        构造一个 stage,由 num_blocks 个 block 组成。
        第一个 block 可能带 stride 下采样,其余 block stride=1。
        """
        strides = [stride] + [1] * (num_blocks - 1)
        layers = []
        for s in strides:
            layers.append(block(self.in_channels, out_channels, stride=s))
            self.in_channels = out_channels * block.expansion
        return nn.Sequential(*layers)

    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))
        x = self.pool1(x)

        x = self.layer1(x)   # output size  /4
        x = self.layer2(x)   # output size  /8
        x = self.layer3(x)   # output size /16
        x = self.layer4(x)   # output size /32

        x = self.avgpool(x)  # [B, C, 1, 1]
        x = torch.flatten(x, 1)
        x = self.fc(x)
        return x

def resnet34(num_classes=1000):
    """返回一个 ResNet-34 实例"""
    return ResNet(BasicBlock, [3, 4, 6, 3], num_classes)

关键点解析

  • BasicBlock

    • 两个连续的 3×3 卷积,均附带 BatchNorm 和 ReLU
    • 当通道数或步幅不匹配时,用 1×1 卷积对输入做一下线性变换,才能做元素相加
  • _make_layer

    • 每个 stage 第一个残差块如果要做下采样,则 stride=2;其余都保持 stride=1
    • layers 参数 [3,4,6,3] 精确对应了图中红、粉、灰、蓝四部分每层 block 的数量
  • 整体流程

    1. 7×7、stride=2 下采样 → 最大池化 →
    2. 四个 stage(通道 64→128→256→512,每段下采样一次)→
    3. 全局平均池化 → 全连接分类

这样就完整复现了图中右侧那张“34-layer residual”结构。你可以直接调用 resnet34(),并像下面这样测试一下输出形状:

if __name__ == "__main__":
    model = resnet34(num_classes=1000)
    x = torch.randn(8, 3, 224, 224)
    y = model(x)
    print(y.shape)   # torch.Size([8, 1000])

ResNet‑50

PyTorch 实现 ResNet‑50 。它与 ResNet‑34 唯一不同之处在于使用了 Bottleneck 模块,并且每个 stage 的 block 数量依次为 [3, 4, 6, 3](同 ResNet‑34),但每个 block 内部由三个卷积层组成,expansion 值为 4。

import torch
import torch.nn as nn
import torch.nn.functional as F

class Bottleneck(nn.Module):
    # 输出通道 = base_channels * expansion
    expansion = 4

    def __init__(self, in_channels, base_channels, stride=1):
        super().__init__()
        # 1×1 降维
        self.conv1 = nn.Conv2d(in_channels, base_channels, kernel_size=1,
                               bias=False)
        self.bn1   = nn.BatchNorm2d(base_channels)
        # 3×3 卷积(可能下采样)
        self.conv2 = nn.Conv2d(base_channels, base_channels, kernel_size=3,
                               stride=stride, padding=1, bias=False)
        self.bn2   = nn.BatchNorm2d(base_channels)
        # 1×1 升维
        self.conv3 = nn.Conv2d(base_channels, base_channels * Bottleneck.expansion,
                               kernel_size=1, bias=False)
        self.bn3   = nn.BatchNorm2d(base_channels * Bottleneck.expansion)

        # shortcut 分支
        self.shortcut = nn.Sequential()
        if stride != 1 or in_channels != base_channels * Bottleneck.expansion:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_channels, base_channels * Bottleneck.expansion,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(base_channels * Bottleneck.expansion)
            )

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = F.relu(self.bn2(self.conv2(out)))
        out = self.bn3(self.conv3(out))
        out += self.shortcut(x)
        return F.relu(out)


class ResNet(nn.Module):
    def __init__(self, block, layers, num_classes=1000):
        super().__init__()
        self.in_channels = 64

        # Stem:7×7 conv + maxpool
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7,
                               stride=2, padding=3, bias=False)
        self.bn1   = nn.BatchNorm2d(64)
        self.pool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        # 四个 stage
        self.layer1 = self._make_layer(block,  64, layers[0], stride=1)
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)

        # 池化 + 全连接
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc      = nn.Linear(512 * block.expansion, num_classes)

    def _make_layer(self, block, base_channels, num_blocks, stride):
        """
        构造一个 stage,由 num_blocks 个 block 组成。
        第一个 block 可能下采样(stride>1),其余保持 stride=1。
        """
        strides = [stride] + [1] * (num_blocks - 1)
        layers = []
        for s in strides:
            layers.append(block(self.in_channels, base_channels, stride=s))
            self.in_channels = base_channels * block.expansion
        return nn.Sequential(*layers)

    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))
        x = self.pool1(x)

        x = self.layer1(x)   # /4
        x = self.layer2(x)   # /8
        x = self.layer3(x)   # /16
        x = self.layer4(x)   # /32

        x = self.avgpool(x)  # [B, C, 1, 1]
        x = torch.flatten(x, 1)
        x = self.fc(x)
        return x

def resnet50(num_classes=1000):
    """返回一个 ResNet-50 实例"""
    return ResNet(Bottleneck, [3, 4, 6, 3], num_classes)


# 简单测试
if __name__ == "__main__":
    model = resnet50(num_classes=1000)
    x = torch.randn(4, 3, 224, 224)
    y = model(x)
    print(y.shape)  # -> torch.Size([4, 1000])

说明

  • Bottleneck 模块:三个卷积层依次为 1×1 → 3×3 → 1×1,最后一个 1×1 用来恢复维度(乘以 expansion=4)。
  • shortcut 分支:当需下采样(stride=2)或输入输出维度不一致时,使用 1×1 卷积对齐后相加。
  • layers 参数 [3,4,6,3]:分别对应四个 stage 中 Bottleneck block 的个数。

这样就完成了 ResNet‑50 的全结构定义。你可以直接调用 resnet50() 并将其与预训练权重或自己的数据集一起使用。


参考:Kaiming He 等人,Deep Residual Learning for Image Recognition (CVPR 2016).


网站公告

今日签到

点亮在社区的每一天
去签到