原题链接:
我自己写的35分正确但严重超时的代码
#include <bits/stdc++.h>
using namespace std;
int main()
{
int n, m, k;
cin >> n >> m >> k;
vector<unordered_map<int, int>> mp(2);
int y;
for (int i = 1; i <= n; i++)
{
cin >> y;
mp[1][i] = y;
}
while (k--)
{
int x, l, r;
cin >> x >> l >> r;
unordered_map<int, int> tmp;
int color_num = 0, num = 0;
unordered_set<int> color_type;
int pos = -1;
for (int i = l; i <= r; i++)
{
if (mp[x].count(i))
{
int color = mp[x][i];
tmp[i] = color;
color_type.insert(color);
if (pos == -1 || tmp[i] != tmp[pos])
num++;
pos = i;
mp[x].erase(i);
}
}
color_num = color_type.size();
mp.push_back(tmp);
cout << color_num << ' ' << num << endl;
}
}
过了7个样例,35分,对于现在的我来说也还行
知道你们肯定不满足35分,特地给出了大佬写的代码,300行+,自己写一个数据结构,我只能说nb,水平有限,不作说明
CCF-CSP第35次认证第五题——木板切割【C++满分题解;平衡树set,线段树,分块预处理,位图;区间合并、懒更新与分治、位运算优化】_csp 木板切割-CSDN博客
#include <iostream>
#include <vector>
#include <set>
#include <algorithm>
#include <cstdint>
using namespace std;
// ------------------------
// 线段树部分:支持查询区间内颜色段数、左右端颜色
// ------------------------
// 线段树节点结构
struct SegmentTreeNode {
int left, right; // 节点区间 [left, right]
int segment_count; // 该区间内颜色段数(相邻颜色相同视为同一段)
int left_color, right_color; // 区间最左/最右的颜色
SegmentTreeNode *left_child, *right_child;
SegmentTreeNode(int l, int r)
: left(l), right(r), segment_count(1), left_color(0), right_color(0),
left_child(nullptr), right_child(nullptr) {}
};
// 建树:叶节点对应单个位置,其颜色直接取自 colors 数组
SegmentTreeNode* buildTree(const vector<int>& colors, int l, int r) {
SegmentTreeNode* node = new SegmentTreeNode(l, r);
if (l == r) {
node->left_color = node->right_color = colors[l];
node->segment_count = 1;
return node;
}
int mid = (l + r) / 2;
node->left_child = buildTree(colors, l, mid);
node->right_child = buildTree(colors, mid + 1, r);
node->left_color = node->left_child->left_color;
node->right_color = node->right_child->right_color;
// 初步合并左右子区间的段数
node->segment_count = node->left_child->segment_count + node->right_child->segment_count;
// 如果左右子区间的边界颜色相同,则合并为一段
if (node->left_child->right_color == node->right_child->left_color) {
node->segment_count--;
}
return node;
}
// 查询区间 [l, r] 的颜色段数以及左右端颜色
void query(SegmentTreeNode* node, int l, int r, int& segment_count, int& first_color, int& last_color) {
if (node == nullptr || node->right < l || node->left > r) {
segment_count = 0;
first_color = -1;
last_color = -1;
return;
}
if (l <= node->left && node->right <= r) {
segment_count = node->segment_count;
first_color = node->left_color;
last_color = node->right_color;
return;
}
int left_seg = 0, right_seg = 0;
int left_first = -1, left_last = -1;
int right_first = -1, right_last = -1;
query(node->left_child, l, r, left_seg, left_first, left_last);
query(node->right_child, l, r, right_seg, right_first, right_last);
if (left_seg == 0) {
segment_count = right_seg;
first_color = right_first;
last_color = right_last;
} else if (right_seg == 0) {
segment_count = left_seg;
first_color = left_first;
last_color = left_last;
} else {
segment_count = left_seg + right_seg;
if (left_last == right_first) segment_count--;
first_color = left_first;
last_color = right_last;
}
}
// ------------------------
// 块状分解部分:预处理整个颜色数组以快速回答区间内“不同颜色数”查询
// 用 64 位整数数组模拟 bitset,每一位表示某种颜色是否出现。
// ------------------------
int B; // 块大小(可调)
int numBlocks; // 总块数
int W; // 每个 bitset 需要的 64 位整数数量(W = ceil(m/64))
vector<int> colors; // 颜色数组(1-indexed)
vector<vector<uint64_t>> blockOR; // 每块预处理的“或”结果
// 查询区间 [L,R] 内颜色的 bitset(即各颜色是否出现的标记),返回大小为 W 的 uint64_t 数组
vector<uint64_t> distinctQuery(int L, int R) {
vector<uint64_t> res(W, 0ULL);
int startBlock = (L - 1) / B;
int endBlock = (R - 1) / B;
if (startBlock == endBlock) {
// 区间完全落在同一块,直接遍历求或
for (int i = L; i <= R; i++) {
int col = colors[i];
int idx = col - 1;
res[idx / 64] |= (1ULL << (idx % 64));
}
} else {
// 处理起始块的部分
int blockStartEnd = (startBlock + 1) * B;
for (int i = L; i <= blockStartEnd; i++) {
int col = colors[i];
int idx = col - 1;
res[idx / 64] |= (1ULL << (idx % 64));
}
// 处理中间整块
for (int b = startBlock + 1; b < endBlock; b++) {
for (int j = 0; j < W; j++) {
res[j] |= blockOR[b][j];
}
}
// 处理结束块的部分
int endBlockStart = endBlock * B + 1;
for (int i = endBlockStart; i <= R; i++) {
int col = colors[i];
int idx = col - 1;
res[idx / 64] |= (1ULL << (idx % 64));
}
}
return res;
}
// 将 src 的 bitset 结果“或”到 dest 上
void unionBitset(vector<uint64_t>& dest, const vector<uint64_t>& src) {
for (int i = 0; i < W; i++) {
dest[i] |= src[i];
}
}
// 统计 bitset 中 1 的个数,即不同颜色数
int countBits(const vector<uint64_t>& bs) {
int cnt = 0;
for (auto x : bs) {
cnt += __builtin_popcountll(x);
}
return cnt;
}
// ------------------------
// 主函数
// ------------------------
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int n, m, k;
cin >> n >> m >> k;
// colors 数组采用 1-indexed,下标 1~n
colors.resize(n + 1);
bool allDistinct = true; // 标记是否所有颜色都不相同(即 c[i] = i 的情况),用于特殊情况优化
for (int i = 1; i <= n; i++) {
cin >> colors[i];
if (colors[i] != i)
allDistinct = false;
}
// 构建线段树(当 allDistinct 为 true 时,本质上不用查询区间信息,但为了代码统一构造)
SegmentTreeNode* root = buildTree(colors, 1, n);
// ------------------------
// 块状分解预处理:构造每块的颜色“或”信息
// ------------------------
B = 512; // 块大小(可根据实际情况调节)
numBlocks = (n + B - 1) / B;
// 每个 bitset 长度为 W = ceil(m/64)
W = (m + 63) / 64;
blockOR.assign(numBlocks, vector<uint64_t>(W, 0ULL));
for (int b = 0; b < numBlocks; b++) {
int L = b * B + 1;
int R = min(n, (b + 1) * B);
for (int i = L; i <= R; i++) {
int col = colors[i];
int idx = col - 1;
blockOR[b][idx / 64] |= (1ULL << (idx % 64));
}
}
// ------------------------
// 每块木板维护一个 set,记录当前木板上存在的区间(区间端点均为原数组下标)
// 初始时 1 号木板包含整个区间 [1, n]
// ------------------------
// 用 pair<int, int> 表示一个区间 [first, second]
vector<set<pair<int, int>>> boards(k + 2); // 共 k+1 号木板,编号 1~k+1
boards[1].insert({1, n});
// 处理 k 次切割操作
// 每次输入 x, l, r 表示对木板 x 的区间 [l, r] 进行切割,
// 切下来的部分构成新的木板,输出:切下部分的不同颜色数 和 颜色段数(合并相邻颜色相同的段后)
for (int op = 1; op <= k; op++) {
int x, l, r;
cin >> x >> l >> r;
set<pair<int, int>>& current = boards[x];
// 收集本次切割中,被切下来的区间
vector<pair<int, int>> cut_segments;
// 在当前木板的区间集合中找到所有与 [l, r] 有交集的区间
auto it = current.lower_bound({l, 0});
if (it != current.begin()) --it;
while (it != current.end()) {
int s = it->first, e = it->second;
if (s > r) break; // 后面的区间起点超过 r,无需继续
if (e < l) { // 当前区间完全在 [l, r] 之前
++it;
continue;
}
// 求交集
int a = max(s, l), b = min(e, r);
if (a <= b) {
cut_segments.push_back({a, b});
// 从当前木板中移除该区间,并将剩余部分(若有)重新加入
auto temp = it;
++it;
current.erase(temp);
if (s < a) {
current.insert({s, a - 1});
}
if (b < e) {
current.insert({b + 1, e});
}
} else {
++it;
}
}
if (cut_segments.empty()) {
cout << "0 0\n";
boards[op + 1].clear();
continue;
}
// 为了后续合并相邻区间处理,先对切割出的区间按起点排序
sort(cut_segments.begin(), cut_segments.end());
// 根据是否满足 c[i] = i(即 allDistinct 为 true)分别处理
if (allDistinct) {
// 在全不相同的情况下,每个区间内不同颜色数和颜色段数均等于区间长度
int distinct_count = 0, total_segments = 0;
for (auto& seg : cut_segments) {
int len = seg.second - seg.first + 1;
distinct_count += len;
total_segments += len;
}
cout << distinct_count << " " << total_segments << "\n";
} else {
// ------------------------
// 1. 利用块状分解“distinctQuery”求多个区间中不同颜色的并集
// ------------------------
vector<uint64_t> union_bs(W, 0ULL);
// 统计所有被切区间的颜色(并集)
for (auto& seg : cut_segments) {
int a = seg.first, b = seg.second;
vector<uint64_t> bs = distinctQuery(a, b);
unionBitset(union_bs, bs);
}
int distinct_count = countBits(union_bs);
// ------------------------
// 2. 利用线段树查询每个被切区间的颜色段数,然后对相邻区间作合并处理
// ------------------------
int total_segments = 0;
for (auto& seg : cut_segments) {
int a = seg.first, b = seg.second;
int seg_count, first, last;
query(root, a, b, seg_count, first, last);
total_segments += seg_count;
}
// 如果相邻两个切割区间原本是连续的且两端颜色相同,则合并后颜色段数减少1
int merged = 0;
for (int i = 1; i < (int)cut_segments.size(); i++) {
int prev_b = cut_segments[i - 1].second;
int curr_a = cut_segments[i].first;
if (prev_b + 1 == curr_a) {
int dummy;
int col1, col2;
query(root, prev_b, prev_b, dummy, col1, col1);
query(root, curr_a, curr_a, dummy, col2, col2);
if (col1 == col2) {
merged++;
}
}
}
total_segments -= merged;
cout << distinct_count << " " << total_segments << "\n";
}
// 新木板编号为 op+1,记录本次切下的所有区间
boards[op + 1].clear();
for (auto& seg : cut_segments) {
boards[op + 1].insert(seg);
}
}
return 0;
}