【Block总结】EBlock,快速傅里叶变换(FFT)增强输入图像的幅度|即插即用|CVPR2025

发布于:2025-06-07 ⋅ 阅读:(22) ⋅ 点赞:(0)

论文信息

标题: DarkIR: Robust Low-Light Image Restoration
作者: Daniel Feijoo, Juan C. Benito, Alvaro Garcia, Marcos Conde
论文链接:https://arxiv.org/pdf/2412.13443
GitHub链接:https://github.com/cidautai/DarkIR
在这里插入图片描述

创新点

DarkIR提出了一种新的卷积神经网络(CNN)框架,旨在同时处理低光图像增强和去模糊任务。与现有方法通常分开处理这两项任务不同,DarkIR通过多任务学习的方式,利用图像退化之间的相关性来提高恢复效果。该模型在参数和计算量上均优于之前的方法,且在多个标准数据集(如LOLBlur、LOLv2和Real-LOLBlur)上取得了新的最先进结果。
在这里插入图片描述

方法

DarkIR的架构采用了编码器-解码器设计,主要包括以下几个部分:

  1. 编码器块(EBlock): 主要在频域中改善低光条件,使用快速傅里叶变换(FFT)增强输入图像的幅度。 通过空间注意模块(SpAM)增强特征提取,确保网络能够关注重要的空间信息。
  2. 解码器块(DBlock): 负责上采样编码器的低分辨率输出并减少模糊。 实现了膨胀空间注意模块(Di-SpAM),通过不同膨胀率的深度卷积捕捉多种感受野的特征。
    该方法结合了频域技术和创新的注意力机制,优化了低光图像的恢复过程。
    在这里插入图片描述

EBlock模块详解

EBlock(编码器块) 是DarkIR模型中的关键组成部分,专注于在低光照条件下进行图像增强。其设计旨在利用频域信息来改善图像质量,具体实现如下:

1. 结构组成

EBlock主要由以下几个部分构成:

  • 空间注意力模块(SpAM): 该模块用于提取重要的空间特征,帮助网络聚焦于图像中的关键区域。SpAM的设计灵感来源于NAFBlock,采用了简化的通道注意力机制,以便在频域增强过程中提取有意义的空间信息。
  • 频域前馈网络(FreMLP): 该模块在频域内操作,通过快速傅里叶变换(FFT)增强输入图像的幅度信息。增强后的幅度信息再通过逆快速傅里叶变换(IFFT)转换回空间域。
    在这里插入图片描述

2. 工作原理

EBlock的工作流程如下:

  • 输入处理: 输入图像首先经过Layer Normalization进行标准化,以提高训练的稳定性。

  • 空间特征提取:通过SpAM模块提取空间特征,确保网络能够关注到图像中的重要区域。结合多个分支的输出,利用门控机制(SimpleGate)进行特征融合。

  • 频域增强:使用FFT对输入图像进行频域转换,主要操作幅度信息。通过FreMLP模块进一步处理频域数据,以增强低光条件下的图像特征。

  • 输出生成: 最终的输出通过1x1卷积层恢复到原始通道数,并与输入进行残差连接,以保持信息的完整性。

效果

DarkIR在真实世界的夜间和暗光图像中表现出色,能够有效地减少噪声和模糊,同时保持高保真度。其在多个数据集上的表现超越了现有的最先进技术,展示了其在计算摄影、智能手机等资源受限设备上的应用潜力。
在这里插入图片描述

完整代码

import torch
import torch.nn as nn



class LayerNormFunction(torch.autograd.Function):
    @staticmethod
    def forward(ctx, x, weight, bias, eps):
        ctx.eps = eps
        N, C, H, W = x.size()
        mu = x.mean(1, keepdim=True)
        var = (x - mu).pow(2).mean(1, keepdim=True)
        y = (x - mu) / (var + eps).sqrt()
        ctx.save_for_backward(y, var, weight)
        y = weight.view(1, C, 1, 1) * y + bias.view(1, C, 1, 1)
        return y

    @staticmethod
    def backward(ctx, grad_output):
        eps = ctx.eps

        N, C, H, W = grad_output.size()
        y, var, weight = ctx.saved_variables
        g = grad_output * weight.view(1, C, 1, 1)
        mean_g = g.mean(dim=1, keepdim=True)

        mean_gy = (g * y).mean(dim=1, keepdim=True)
        gx = 1. / torch.sqrt(var + eps) * (g - y * mean_gy - mean_g)
        return gx, (grad_output * y).sum(dim=3).sum(dim=2).sum(dim=0), grad_output.sum(dim=3).sum(dim=2).sum(
            dim=0), None

class LayerNorm2d(nn.Module):

    def __init__(self, channels, eps=1e-6):
        super(LayerNorm2d, self).__init__()
        self.register_parameter('weight', nn.Parameter(torch.ones(channels)))
        self.register_parameter('bias', nn.Parameter(torch.zeros(channels)))
        self.eps = eps

    def forward(self, x):
        return LayerNormFunction.apply(x, self.weight, self.bias, self.eps)


class SimpleGate(nn.Module):
    def forward(self, x):
        x1, x2 = x.chunk(2, dim=1)
        return x1 * x2


class Adapter(nn.Module):

    def __init__(self, c, ffn_channel=None):
        super().__init__()
        if ffn_channel:
            ffn_channel = 2
        else:
            ffn_channel = c
        self.conv1 = nn.Conv2d(in_channels=c, out_channels=ffn_channel, kernel_size=1, padding=0, stride=1, groups=1,
                               bias=True)
        self.conv2 = nn.Conv2d(in_channels=ffn_channel, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1,
                               bias=True)
        self.depthwise = nn.Conv2d(in_channels=c, out_channels=ffn_channel, kernel_size=3, padding=1, stride=1,
                                   groups=c, bias=True, dilation=1)

    def forward(self, input):

        x = self.conv1(input) + self.depthwise(input)
        x = self.conv2(x)

        return x


class FreMLP(nn.Module):

    def __init__(self, nc, expand=2):
        super(FreMLP, self).__init__()
        self.process1 = nn.Sequential(
            nn.Conv2d(nc, expand * nc, 1, 1, 0),
            nn.LeakyReLU(0.1, inplace=True),
            nn.Conv2d(expand * nc, nc, 1, 1, 0))

    def forward(self, x):
        _, _, H, W = x.shape
        x_freq = torch.fft.rfft2(x, norm='backward')
        mag = torch.abs(x_freq)
        pha = torch.angle(x_freq)
        mag = self.process1(mag)
        real = mag * torch.cos(pha)
        imag = mag * torch.sin(pha)
        x_out = torch.complex(real, imag)
        x_out = torch.fft.irfft2(x_out, s=(H, W), norm='backward')
        return x_out


class Branch(nn.Module):
    '''
    Branch that lasts lonly the dilated convolutions
    '''

    def __init__(self, c, DW_Expand, dilation=1):
        super().__init__()
        self.dw_channel = DW_Expand * c

        self.branch = nn.Sequential(
            nn.Conv2d(in_channels=self.dw_channel, out_channels=self.dw_channel, kernel_size=3, padding=dilation,
                      stride=1, groups=self.dw_channel,
                      bias=True, dilation=dilation)  # the dconv
        )

    def forward(self, input):
        return self.branch(input)


class DBlock(nn.Module):
    '''
    Change this block using Branch
    '''

    def __init__(self, c, DW_Expand=2, FFN_Expand=2, dilations=[1], extra_depth_wise=False):
        super().__init__()
        # we define the 2 branches
        self.dw_channel = DW_Expand * c

        self.conv1 = nn.Conv2d(in_channels=c, out_channels=self.dw_channel, kernel_size=1, padding=0, stride=1,
                               groups=1, bias=True, dilation=1)
        self.extra_conv = nn.Conv2d(self.dw_channel, self.dw_channel, kernel_size=3, padding=1, stride=1, groups=c,
                                    bias=True, dilation=1) if extra_depth_wise else nn.Identity()  # optional extra dw
        self.branches = nn.ModuleList()
        for dilation in dilations:
            self.branches.append(Branch(self.dw_channel, DW_Expand=1, dilation=dilation))

        assert len(dilations) == len(self.branches)
        self.dw_channel = DW_Expand * c
        self.sca = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(in_channels=self.dw_channel // 2, out_channels=self.dw_channel // 2, kernel_size=1, padding=0,
                      stride=1,
                      groups=1, bias=True, dilation=1),
        )
        self.sg1 = SimpleGate()
        self.sg2 = SimpleGate()
        self.conv3 = nn.Conv2d(in_channels=self.dw_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1,
                               groups=1, bias=True, dilation=1)
        ffn_channel = FFN_Expand * c
        self.conv4 = nn.Conv2d(in_channels=c, out_channels=ffn_channel, kernel_size=1, padding=0, stride=1, groups=1,
                               bias=True)
        self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1,
                               groups=1, bias=True)

        self.norm1 = LayerNorm2d(c)
        self.norm2 = LayerNorm2d(c)

        self.gamma = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)
        self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)

    def forward(self, inp):

        y = inp
        x = self.norm1(inp)
        # x = self.conv1(self.extra_conv(x))
        x = self.extra_conv(self.conv1(x))
        z = 0
        for branch in self.branches:
            z += branch(x)
        z = self.sg1(z)
        x = self.sca(z) * z
        x = self.conv3(x)
        y = inp + self.beta * x
        # second step
        x = self.conv4(self.norm2(y))  # size [B, 2*C, H, W]
        x = self.sg2(x)  # size [B, C, H, W]
        x = self.conv5(x)  # size [B, C, H, W]
        x = y + x * self.gamma
        return x


class EBlock(nn.Module):
    '''
    Change this block using Branch
    '''

    def __init__(self, c, DW_Expand=2,  dilations = [1], extra_depth_wise=False):
        super().__init__()
        # we define the 2 branches
        self.dw_channel = DW_Expand * c
        self.extra_conv = nn.Conv2d(c, c, kernel_size=3, padding=1, stride=1, groups=c, bias=True,
                                    dilation=1) if extra_depth_wise else nn.Identity()  # optional extra dw
        self.conv1 = nn.Conv2d(in_channels=c, out_channels=self.dw_channel, kernel_size=1, padding=0, stride=1,
                               groups=1, bias=True, dilation=1)

        self.branches = nn.ModuleList()
        for dilation in dilations:
            self.branches.append(Branch(c, DW_Expand, dilation=dilation))

        assert len(dilations) == len(self.branches)
        self.dw_channel = DW_Expand * c
        self.sca = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(in_channels=self.dw_channel // 2, out_channels=self.dw_channel // 2, kernel_size=1, padding=0,
                      stride=1,
                      groups=1, bias=True, dilation=1),
        )
        self.sg1 = SimpleGate()
        self.conv3 = nn.Conv2d(in_channels=self.dw_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1,
                               groups=1, bias=True, dilation=1)
        # second step

        self.norm1 = LayerNorm2d(c)
        self.norm2 = LayerNorm2d(c)
        self.freq = FreMLP(nc=c, expand=2)
        self.gamma = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)
        self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)

    #        self.adapter = Adapter(c, ffn_channel=None)

    #        self.use_adapters = False

    #    def set_use_adapters(self, use_adapters):
    #        self.use_adapters = use_adapters

    def forward(self, inp):
        y = inp
        x = self.norm1(inp)
        x = self.conv1(self.extra_conv(x))
        z = 0
        for branch in self.branches:
            z += branch(x)

        z = self.sg1(z)
        x = self.sca(z) * z
        x = self.conv3(x)
        y = inp + self.beta * x
        # second step
        x_step2 = self.norm2(y)  # size [B, 2*C, H, W]
        x_freq = self.freq(x_step2)  # size [B, C, H, W]
        x = y * x_freq
        x = y + x * self.gamma

        #        if self.use_adapters:
        #            return self.adapter(x)
        #        else:
        return x


if __name__ == "__main__":
    # 定义输入张量大小(Batch、Channel、Height、Wight)
    B, C, H, W = 16, 64, 8, 8
    input_tensor = torch.randn(B,C,H,W)  # 随机生成输入张量
    dim=C
    # 创建 DynamicTanh 实例
    block = EBlock(dim,dilations=[1, 4, 9])
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    block = block.to(device)
    print(block)
    input_tensor = input_tensor.to(device)
    # 执行前向传播
    output = block(input_tensor)
    # 打印输入和输出的形状
    print(f"Input: {input_tensor.shape}")
    print(f"Output: {output.shape}")

在这里插入图片描述