前言
最近想开一个关于强化学习专栏,因为DeepSeek-R1很火,但本人对于LLM连门都没入。因此,只是记录一些类似的读书笔记,内容不深,大多数只是一些概念的东西,数学公式也不会太多,还望读者多多指教。本次阅读书籍为:马克西姆的《深度强化学习实践》。
限于篇幅原因,请读者首先看下历史文章:
马尔科夫过程
马尔科夫奖励过程
马尔科夫奖励过程二
RL框架Gym简介
Gym实现CartPole随机智能体
本篇开始,将介绍第一个RL算法,交叉熵算法。
1、交叉熵公式推导
1.1.前置基础
在介绍交叉熵算法之前,为了防止读者对交叉熵算法由来有疑惑,因此,先简单介绍下数学公式推导:
E x ∼ p ( x ) [ H ( x ) ] = ∫ x p ( x ) H ( x ) d x E_{x \sim p(x)}[H(x)]=\int_{x}p(x)H(x)dx Ex∼p(x)[H(x)]=∫xp(x)H(x)dx
在上述公式中: p ( x ) p(x) p(x)是所有可能策略概率分布,而 H ( x ) H(x) H(x)是采取x策略所获得的奖励值。而目的则是得到奖励值的期望,也就是将其积分。
但由于直接计算 p ( x ) p(x) p(x)很难,因此我们希望找到一个 q ( x ) q(x) q(x)来逼近 p ( x ) p(x) p(x),则此时公式变成:
E x ∼ p ( x ) [ H ( x ) ] = ∫ x p ( x ) H ( x ) d x = ∫ x q ( x ) p ( x ) q ( x ) H ( x ) d x = E x ∼ q ( x ) [ q ( x ) p ( x ) q ( x ) H ( x ) ] E_{x \sim p(x)}[H(x)]=\int_{x}p(x)H(x)dx=\int_{x}q(x)\frac{p(x)}{q(x)}H(x)dx=E_{x \sim q(x)}[q(x)\frac{p(x)}{q(x)}H(x)] Ex∼p(x)[H(x)]=∫xp(x)H(x)dx=∫xq(x)q(x)p(x)H(x)dx=Ex∼q(x)[q(x)q(x)p(x)H(x)]
然后根据KL散度来逐步用 q ( x ) q(x) q(x)来逼近 p ( x ) p(x) p(x),KL散度定义为:
K L ( p ( x ) ∣ ∣ q ( x ) ) = E x ∼ p ( x ) l o g p ( x ) q ( x ) = E x ∼ p ( x ) l o g ( p ( x ) ) − E x ∼ p ( x ) l o g ( q ( x ) ) KL(p(x)||q(x)) = E_{x \sim p_(x)}log \frac{p(x)}{q(x)} = E_{x \sim p(x)}log(p(x)) - E_{x \sim p(x)}log(q(x)) KL(p(x)∣∣q(x))=Ex∼p(x)logq(x)p(x)=Ex∼p(x)log(p(x))−Ex∼p(x)log(q(x))
则在上述公式中:第一项为熵,由于跟优化目标无关,可以忽略;第二项为交叉熵,即深度学习中通常的损失函数。
1.2.推导迭代公式
根据公式1可以得出:
E x ∼ p ( x ) [ H ( x ) ] = E x ∼ q i ( x ) [ p ( x ) q i ( x ) H ( x ) ] E_{x \sim p(x)}[H(x)] = E_{x \sim q_i(x)}\left[\frac{p(x)}{q_i(x)} H(x)\right] Ex∼p(x)[H(x)]=Ex∼qi(x)[qi(x)p(x)H(x)]
之后可以使用重要采样来重写 KL 散度。重要采样是一种通过另一个分布 q i ( x ) q_i(x) qi(x) 来估计期望的方法。具体来说:
E x ∼ p ( x ) [ f ( x ) ] = ∫ f ( x ) p ( x ) d x = ∫ f ( x ) p ( x ) q i ( x ) q i ( x ) d x = E x ∼ q i ( x ) [ f ( x ) p ( x ) q i ( x ) ] E_{x \sim p(x)}[f(x)] = \int f(x) p(x) \, dx = \int f(x) \frac{p(x)}{q_i(x)} q_i(x) \, dx = E_{x \sim q_i(x)}\left[f(x) \frac{p(x)}{q_i(x)}\right] Ex∼p(x)[f(x)]=∫f(x)p(x)dx=∫f(x)qi(x)p(x)qi(x)dx=Ex∼qi(x)[f(x)qi(x)p(x)]
将这个思想应用到 KL 散度上:
K L ( p ( x ) ∥ q i + 1 ( x ) ) = E x ∼ p ( x ) log p ( x ) q i + 1 ( x ) = E x ∼ q i ( x ) [ log p ( x ) q i + 1 ( x ) ⋅ p ( x ) q i ( x ) ] KL(p(x) \| q_{i+1}(x)) = E_{x \sim p(x)} \log \frac{p(x)}{q_{i+1}(x)} = E_{x \sim q_i(x)}\left[\log \frac{p(x)}{q_{i+1}(x)} \cdot \frac{p(x)}{q_i(x)}\right] KL(p(x)∥qi+1(x))=Ex∼p(x)logqi+1(x)p(x)=Ex∼qi(x)[logqi+1(x)p(x)⋅qi(x)p(x)]
进一步展开表达式:
K L ( p ( x ) ∥ q i + 1 ( x ) ) = E x ∼ q i ( x ) [ p ( x ) q i ( x ) ( log p ( x ) − log q i + 1 ( x ) ) ] KL(p(x) \| q_{i+1}(x)) = E_{x \sim q_i(x)}\left[\frac{p(x)}{q_i(x)} \left(\log p(x) - \log q_{i+1}(x)\right)\right] KL(p(x)∥qi+1(x))=Ex∼qi(x)[qi(x)p(x)(logp(x)−logqi+1(x))]
将表达式分离为两部分:
K L ( p ( x ) ∥ q i + 1 ( x ) ) = E x ∼ q i ( x ) [ p ( x ) q i ( x ) log p ( x ) ] − E x ∼ q i ( x ) [ p ( x ) q i ( x ) log q i + 1 ( x ) ] KL(p(x) \| q_{i+1}(x)) = E_{x \sim q_i(x)}\left[\frac{p(x)}{q_i(x)} \log p(x)\right] - E_{x \sim q_i(x)}\left[\frac{p(x)}{q_i(x)} \log q_{i+1}(x)\right] KL(p(x)∥qi+1(x))=Ex∼qi(x)[qi(x)p(x)logp(x)]−Ex∼qi(x)[qi(x)p(x)logqi+1(x)]
注意到第一部分 E x ∼ q i ( x ) [ p ( x ) q i ( x ) log p ( x ) ] E_{x \sim q_i(x)}\left[\frac{p(x)}{q_i(x)} \log p(x)\right] Ex∼qi(x)[qi(x)p(x)logp(x)] 是关于 q i + 1 ( x ) q_{i+1}(x) qi+1(x) 的常数项,因此我们在最小化 KL 散度时可以忽略这一部分:
min q i + 1 ( x ) K L ( p ( x ) ∥ q i + 1 ( x ) ) = min q i + 1 ( x ) − E x ∼ q i ( x ) [ p ( x ) q i ( x ) log q i + 1 ( x ) ] \min_{q_{i+1}(x)} KL(p(x) \| q_{i+1}(x)) = \min_{q_{i+1}(x)} -E_{x \sim q_i(x)}\left[\frac{p(x)}{q_i(x)} \log q_{i+1}(x)\right] qi+1(x)minKL(p(x)∥qi+1(x))=qi+1(x)min−Ex∼qi(x)[qi(x)p(x)logqi+1(x)]
为了与原始问题中的 H ( x ) H(x) H(x) 结合,假设 H ( x ) = 1 H(x) =1 H(x)=1(即没有额外的权重)。如果 H ( x ) ≠ 1 H(x) \neq 1 H(x)=1,则可以在目标函数中包含 H ( x ) H(x) H(x):
min q i + 1 ( x ) − E x ∼ q i ( x ) [ p ( x ) q i ( x ) H ( x ) log q i + 1 ( x ) ] \min_{q_{i+1}(x)} -E_{x \sim q_i(x)}\left[\frac{p(x)}{q_i(x)} H(x) \log q_{i+1}(x)\right] qi+1(x)min−Ex∼qi(x)[qi(x)p(x)H(x)logqi+1(x)]
则最终迭代公式为:
q i + 1 ( x ) = arg min − E x ∼ q i ( x ) p ( x ) q i ( x ) H ( x ) log q i + 1 ( x ) q_{i+1}(x) = \arg\min -E_{x \sim q_i(x)} \frac{p(x)}{q_i(x)} H(x) \log q_{i+1}(x) qi+1(x)=argmin−Ex∼qi(x)qi(x)p(x)H(x)logqi+1(x)
2、转化到RL
根据上节推导出的公式,换元得到RL的损失函数:
π i + 1 ( a ∣ s ) = arg min − E z ∼ π i ( a ∣ s ) p ( x ) π i ( a ∣ s ) H ( x ) log π i + 1 ( a ∣ s ) \pi_{i+1}(a|s) = \arg\min -E_{z \sim \pi_i(a|s)} \frac{p(x)}{\pi_i(a|s)} H(x) \log \pi_{i+1}(a|s) πi+1(a∣s)=argmin−Ez∼πi(a∣s)πi(a∣s)p(x)H(x)logπi+1(a∣s)
在上述公式中, p ( x ) H ( x ) p(x)H(x) p(x)H(x)可以用指示函数替代,超过阈值为1,否则奖励为0。最终通过SGD就能得到一个 π \pi π最优策略模型,进而逼近真实的分布。
总结
本篇的公式比较多,我也有点儿懵逼,可以不用深入理解。下一篇将交叉熵方法用到CartPole智能体看看效果变得如何。