PyG测试GCN无线通信网络拓扑推理方法时间复杂度

发布于:2025-06-10 ⋅ 阅读:(26) ⋅ 点赞:(0)

前置数据见我的另一篇博客:

PyG遍历生成20节点到500节点的大规模无线通信网络拓扑推理数据

时间复杂度测试注意事项:

1.测试时间复杂度前一定要训练模型,没训练的模型和训练好的模型测试结果肯定是不一样的。预测时长和模型参数是有关系的,因为,不同数值的参数对应的二进制位数长度不一样。

2.步进不要设置太密集。测试复杂度肯定要训练大规模图数据,一个1000节点的无线通信网络拓扑图数据.mat文件就307M:

 步进太密集一个是占用硬盘空间太大,另一个是没必要花那么长时间测试。步进为10下,20到1000个节点就有100个左右的点了,够拟合复杂度曲线了。

程序: 

#作者:zhouzhichao
#创建时间:25年6月9日
#内容:进行时间复杂度测试

import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
import sys
import torch
import time
torch.set_printoptions(linewidth=200)
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from torch_geometric.nn import GCNConv
sys.path.append('D:\无线通信网络认知\论文1\大修意见\Reviewer1-1 阈值相似性图对比实验')
from gcn_dataset import graph_data
print(torch.__version__)
print(torch.cuda.is_available())
from sklearn.metrics import roc_auc_score, precision_score, recall_score, accuracy_score

class Net(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = GCNConv(Input_L, 100)
        self.conv2 = GCNConv(100, 50)

    def encode(self, x, edge_index):
        c1_in = x.T
        c1_out = self.conv1(c1_in, edge_index)
        c1_relu = c1_out.relu()
        c2_out = self.conv2(c1_relu, edge_index)
        c2_relu = c2_out.relu()
        return c2_relu

    def decode(self, z, edge_label_index):
        # 节点和边都是矩阵,不同的计算方法致使:节点->节点,节点->边
        distance_squared = torch.sum((z[edge_label_index[0]] - z[edge_label_index[1]]) ** 2, dim=-1)
        return distance_squared

    def decode_all(self, z):
        prob_adj = z @ z.t()  # 得到所有边概率矩阵
        return (prob_adj > 0).nonzero(as_tuple=False).t()  # 返回概率大于0的边,以edge_index的形式

    @torch.no_grad()
    def get_val(self, gcn_data):
        #获取未参与训练的节点索引
        edge_index = gcn_data.edge_index  # [2, 30]
        edge_label_index = gcn_data.edge_label_index  # [2, 60]
        edge_label = gcn_data.edge_label

        # 转置方便处理,变成 (num_edges, 2)
        edge_index_t = edge_index.t()  # [30, 2]
        edge_label_index_t = edge_label_index.t()  # [60, 2]

        # 把边转成集合形式的字符串,方便查找(也可用tuple)
        edge_index_set = set([tuple(e.tolist()) for e in edge_index_t])

        # 判断edge_label_index中的每个边是否在edge_index_set里
        is_in_edge_index = [tuple(e.tolist()) in edge_index_set for e in edge_label_index_t]

        is_in_edge_index = torch.tensor(is_in_edge_index)


        # 不相同的列(边)
        val_col = edge_label_index[:, ~is_in_edge_index]

        val_label = edge_label[~is_in_edge_index]

        val_col = val_col[:,:100]
        val_label = val_label[:100]

        divide_index = 50
        val_col_1 = val_col[:,:divide_index]
        val_label_1 = val_label[:divide_index]
        val_col_0 = val_col[:, divide_index:]
        val_label_0 = val_label[divide_index:]

        return  val_col_1, val_label_1, val_col_0, val_label_0

    @torch.no_grad()
    def test_val(self, gcn_data, threshhold):
        model.eval()
        # same_col, diff_col, same_label, diff_label = col_devide(gcn_data)
        val_col_1, val_label_1, val_col_0, val_label_0 = self.get_val(gcn_data)

        # 1
        z = model.encode(gcn_data.x, gcn_data.edge_index)
        out = model.decode(z, val_col_1).view(-1)
        out = 1 - out
        out_np = out.cpu().numpy()
        labels_1 = val_label_1.cpu().numpy()
        # roc_auc_s = roc_auc_score(labels_np, out_np)
        pred_1 = (out_np > threshhold).astype(int)
        accuracy_1 = accuracy_score(labels_1, pred_1)
        precision_1 = precision_score(labels_1, pred_1, zero_division=1)
        recall_1 = recall_score(labels_1, pred_1, zero_division=1)

        # 0
        z = model.encode(gcn_data.x, gcn_data.edge_index)
        out = model.decode(z, val_col_0).view(-1)
        out = 1 - out
        out_np = out.cpu().numpy()
        labels_0 = val_label_0.cpu().numpy()
        # roc_auc_d = roc_auc_score(labels_np, out_np)
        pred_0 = (out_np > threshhold).astype(int)
        accuracy_0 = accuracy_score(labels_0, pred_0)
        precision_0 = precision_score(labels_0, pred_0, zero_division=1)
        recall_0 = recall_score(labels_0, pred_0, zero_division=1)

        accuracy = (accuracy_1 + accuracy_0)/2
        precision = (precision_1 + precision_0)/2
        recall = (recall_1 + recall_0)/2

        return accuracy, precision, recall

    @torch.no_grad()
    def predict(self, gcn_data, threshhold):
        model.eval()
        z = model.encode(gcn_data.x, gcn_data.edge_index)
        out = model.decode(z, gcn_data.complex_test).view(-1)
        out = 1 - out
        out_np = out.cpu().numpy()
        pred = (out_np > threshhold).astype(int)
        return pred

    @torch.no_grad()
    def calculate_threshhold(self, gcn_data):
        model.eval()

        z = model.encode(gcn_data.x, gcn_data.edge_index)
        out = model.decode(z, gcn_data.edge_label_index).view(-1)
        out = 1 - out

        out_np = out.cpu().numpy()
        labels_np = gcn_data.edge_label.cpu().numpy()

        threshhold = 0
        accuracy_max = 0
        for th in np.arange(-2, 1.1, 0.1):
            pred_labels = (out_np > th).astype(int)
            accuracy = accuracy_score(labels_np, pred_labels)
            if accuracy>accuracy_max:
                accuracy_max = accuracy
                threshhold = th

        return threshhold

def graph_normalize(gcn_data):
    for i in range(gcn_data.x.shape[1]):
        gcn_data.x[:, i] = gcn_data.x[:,i]/torch.max(torch.abs(gcn_data.x[:,i]))

cost_time = []
N_list = []
# for N in range(20,510,10):
for N in range(510, 1010, 10):
    N_list.append(N)
    root = "D:\无线通信网络认知\论文1\大修意见\Reviewer1-4 大规模图实验\\20-500节点网络(PyG)\\"+str(N)+"_nodes_data"
    gcn_data = graph_data(root)
    graph_normalize(gcn_data)

    Input_L = gcn_data.x.shape[0]

    model = Net()
    optimizer = torch.optim.Adam(params=model.parameters(), lr=0.01)
    criterion = torch.nn.BCEWithLogitsLoss()

    model.train()

    def train():
        optimizer.zero_grad()
        z = model.encode(gcn_data.x, gcn_data.edge_index)
        out = model.decode(z, gcn_data.edge_label_index).view(-1)
        out = 1 - out
        loss = criterion(out, gcn_data.edge_label)
        loss.backward()
        optimizer.step()
        return loss

    min_loss = 99999
    count = 0#早停
    for epoch in range(100000):
        loss = train()
        if loss<min_loss:
            min_loss = loss
            count = 0
            print("N:  ", N, "  epoch:  ", epoch, "   loss: ",
                  round(loss.item(), 4), "   min_loss: ", round(min_loss.item(), 4))
        count = count + 1
        if count>100:
           break




    t1 = time.time()
    for p in range(100):
        threshhold = model.calculate_threshhold(gcn_data)
        pred = model.predict(gcn_data,threshhold)
    t2 = time.time()
    delta_t = (t2 - t1)/100

    cost_time.append(delta_t)

data = {
    'N_list': N_list,
    'cost_time': cost_time
}

# 创建一个 DataFrame
df = pd.DataFrame(data)
#
# # 保存到 Excel 文件
# file_path = 'D:\无线通信网络认知\论文1\大修意见\Reviewer1-4 大规模图实验\\20-500 nodes time cost.xlsx'
file_path = 'D:\无线通信网络认知\论文1\大修意见\Reviewer1-4 大规模图实验\\510-1000 nodes time cost.xlsx'
df.to_excel(file_path, index=False)



复杂度测试结果: