题目
求系统 U u + A U x = 0 U_u + A U_x = 0 Uu+AUx=0 的特征并写出通解,其中矩阵 A A A 如下:
A 1 = ( 3 2 1 0 2 1 0 0 1 ) , A 2 = ( 3 2 1 0 2 1 0 0 − 1 ) , A_1 = \begin{pmatrix} 3 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 3 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & -1 \end{pmatrix}, A1=⎝⎛300220111⎠⎞,A2=⎝⎛30022011−1⎠⎞,
A 3 = ( 3 2 1 0 − 2 1 0 0 − 1 ) , A 4 = ( − 3 2 1 0 − 2 1 0 0 − 1 ) , A_3 = \begin{pmatrix} 3 & 2 & 1 \\ 0 & -2 & 1 \\ 0 & 0 & -1 \end{pmatrix}, \quad A_4 = \begin{pmatrix} -3 & 2 & 1 \\ 0 & -2 & 1 \\ 0 & 0 & -1 \end{pmatrix}, A3=⎝⎛3002−2011−1⎠⎞,A4=⎝⎛−3002−2011−1⎠⎞,
A 5 = ( 1 2 3 2 0 3 2 3 0 ) . A_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 0 & 3 \\ 2 & 3 & 0 \end{pmatrix}. A5=⎝⎛122203330⎠⎞.
解答
系统为 ∂ U ∂ u + A ∂ U ∂ x = 0 \frac{\partial \mathbf{U}}{\partial u} + A \frac{\partial \mathbf{U}}{\partial x} = 0 ∂u∂U+A∂x∂U=0,其中 U = ( u 1 , u 2 , u 3 ) T \mathbf{U} = (u_1, u_2, u_3)^T U=(u1,u2,u3)T 是向量函数, u u u 和 x x x 是自变量。
- 特征:指矩阵 A A A 的特征值 λ \lambda λ,它们决定了特征曲线的方向。特征曲线由方程 x − λ u = 常数 x - \lambda u = \text{常数} x−λu=常数 给出。
- 通解:通过求解特征值问题和对角化(或类似方法)得到。通解形式为 U ( u , x ) = ∑ k f k ( x − λ k u ) v k \mathbf{U}(u, x) = \sum_{k} f_k(x - \lambda_k u) \mathbf{v}_k U(u,x)=k∑fk(x−λku)vk,其中 λ k \lambda_k λk 是特征值, v k \mathbf{v}_k vk 是相应的特征向量, f k f_k fk 是任意可微函数。
下面针对每个矩阵 A A A 求解特征值并写出通解。
1. 对于 A 1 = ( 3 2 1 0 2 1 0 0 1 ) A_1 = \begin{pmatrix} 3 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A1=⎝⎛300220111⎠⎞
- 特征值: λ 1 = 3 \lambda_1 = 3 λ1=3, λ 2 = 2 \lambda_2 = 2 λ2=2, λ 3 = 1 \lambda_3 = 1 λ3=1(全部实数且互异)。
- 特征向量:
- λ 1 = 3 \lambda_1 = 3 λ1=3: v 1 = ( 1 0 0 ) \mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} v1=⎝⎛100⎠⎞
- λ 2 = 2 \lambda_2 = 2 λ2=2: v 2 = ( − 2 1 0 ) \mathbf{v}_2 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} v2=⎝⎛−210⎠⎞
- λ 3 = 1 \lambda_3 = 1 λ3=1: v 3 = ( 1 − 2 2 ) \mathbf{v}_3 = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} v3=⎝⎛1−22⎠⎞
- 通解:
U ( u , x ) = f 1 ( x − 3 u ) ( 1 0 0 ) + f 2 ( x − 2 u ) ( − 2 1 0 ) + f 3 ( x − u ) ( 1 − 2 2 ) \mathbf{U}(u, x) = f_1(x - 3u) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + f_2(x - 2u) \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} + f_3(x - u) \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} U(u,x)=f1(x−3u)⎝⎛100⎠⎞+f2(x−2u)⎝⎛−210⎠⎞+f3(x−u)⎝⎛1−22⎠⎞
即分量形式:
{ u 1 ( u , x ) = f 1 ( x − 3 u ) − 2 f 2 ( x − 2 u ) + f 3 ( x − u ) u 2 ( u , x ) = f 2 ( x − 2 u ) − 2 f 3 ( x − u ) u 3 ( u , x ) = 2 f 3 ( x − u ) \begin{cases} u_1(u, x) = f_1(x - 3u) - 2 f_2(x - 2u) + f_3(x - u) \\ u_2(u, x) = f_2(x - 2u) - 2 f_3(x - u) \\ u_3(u, x) = 2 f_3(x - u) \end{cases} ⎩⎪⎨⎪⎧u1(u,x)=f1(x−3u)−2f2(x−2u)+f3(x−u)u2(u,x)=f2(x−2u)−2f3(x−u)u3(u,x)=2f3(x−u)
其中 f 1 , f 2 , f 3 f_1, f_2, f_3 f1,f2,f3 是任意可微函数。
2. 对于 A 2 = ( 3 2 1 0 2 1 0 0 − 1 ) A_2 = \begin{pmatrix} 3 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & -1 \end{pmatrix} A2=⎝⎛30022011−1⎠⎞
- 特征值: λ 1 = 3 \lambda_1 = 3 λ1=3, λ 2 = 2 \lambda_2 = 2 λ2=2, λ 3 = − 1 \lambda_3 = -1 λ3=−1(全部实数且互异)。
- 特征向量:
- λ 1 = 3 \lambda_1 = 3 λ1=3: v 1 = ( 1 0 0 ) \mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} v1=⎝⎛100⎠⎞
- λ 2 = 2 \lambda_2 = 2 λ2=2: v 2 = ( − 2 1 0 ) \mathbf{v}_2 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} v2=⎝⎛−210⎠⎞
- λ 3 = − 1 \lambda_3 = -1 λ3=−1: v 3 = ( 1 4 − 12 ) \mathbf{v}_3 = \begin{pmatrix} 1 \\ 4 \\ -12 \end{pmatrix} v3=⎝⎛14−12⎠⎞
- 通解:
U ( u , x ) = f 1 ( x − 3 u ) ( 1 0 0 ) + f 2 ( x − 2 u ) ( − 2 1 0 ) + f 3 ( x + u ) ( 1 4 − 12 ) \mathbf{U}(u, x) = f_1(x - 3u) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + f_2(x - 2u) \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} + f_3(x + u) \begin{pmatrix} 1 \\ 4 \\ -12 \end{pmatrix} U(u,x)=f1(x−3u)⎝⎛100⎠⎞+f2(x−2u)⎝⎛−210⎠⎞+f3(x+u)⎝⎛14−12⎠⎞
即分量形式:
{ u 1 ( u , x ) = f 1 ( x − 3 u ) − 2 f 2 ( x − 2 u ) + f 3 ( x + u ) u 2 ( u , x ) = f 2 ( x − 2 u ) + 4 f 3 ( x + u ) u 3 ( u , x ) = − 12 f 3 ( x + u ) \begin{cases} u_1(u, x) = f_1(x - 3u) - 2 f_2(x - 2u) + f_3(x + u) \\ u_2(u, x) = f_2(x - 2u) + 4 f_3(x + u) \\ u_3(u, x) = -12 f_3(x + u) \end{cases} ⎩⎪⎨⎪⎧u1(u,x)=f1(x−3u)−2f2(x−2u)+f3(x+u)u2(u,x)=f2(x−2u)+4f3(x+u)u3(u,x)=−12f3(x+u)
其中 f 1 , f 2 , f 3 f_1, f_2, f_3 f1,f2,f3 是任意可微函数。
3. 对于 A 3 = ( 3 2 1 0 − 2 1 0 0 − 1 ) A_3 = \begin{pmatrix} 3 & 2 & 1 \\ 0 & -2 & 1 \\ 0 & 0 & -1 \end{pmatrix} A3=⎝⎛3002−2011−1⎠⎞
- 特征值: λ 1 = 3 \lambda_1 = 3 λ1=3, λ 2 = − 2 \lambda_2 = -2 λ2=−2, λ 3 = − 1 \lambda_3 = -1 λ3=−1(全部实数且互异)。
- 特征向量:
- λ 1 = 3 \lambda_1 = 3 λ1=3: v 1 = ( 1 0 0 ) \mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} v1=⎝⎛100⎠⎞
- λ 2 = − 2 \lambda_2 = -2 λ2=−2: v 2 = ( − 2 5 0 ) \mathbf{v}_2 = \begin{pmatrix} -2 \\ 5 \\ 0 \end{pmatrix} v2=⎝⎛−250⎠⎞
- λ 3 = − 1 \lambda_3 = -1 λ3=−1: v 3 = ( − 3 4 4 ) \mathbf{v}_3 = \begin{pmatrix} -3 \\ 4 \\ 4 \end{pmatrix} v3=⎝⎛−344⎠⎞
- 通解:
U ( u , x ) = f 1 ( x − 3 u ) ( 1 0 0 ) + f 2 ( x + 2 u ) ( − 2 5 0 ) + f 3 ( x + u ) ( − 3 4 4 ) \mathbf{U}(u, x) = f_1(x - 3u) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + f_2(x + 2u) \begin{pmatrix} -2 \\ 5 \\ 0 \end{pmatrix} + f_3(x + u) \begin{pmatrix} -3 \\ 4 \\ 4 \end{pmatrix} U(u,x)=f1(x−3u)⎝⎛100⎠⎞+f2(x+2u)⎝⎛−250⎠⎞+f3(x+u)⎝⎛−344⎠⎞
即分量形式:
{ u 1 ( u , x ) = f 1 ( x − 3 u ) − 2 f 2 ( x + 2 u ) − 3 f 3 ( x + u ) u 2 ( u , x ) = 5 f 2 ( x + 2 u ) + 4 f 3 ( x + u ) u 3 ( u , x ) = 4 f 3 ( x + u ) \begin{cases} u_1(u, x) = f_1(x - 3u) - 2 f_2(x + 2u) - 3 f_3(x + u) \\ u_2(u, x) = 5 f_2(x + 2u) + 4 f_3(x + u) \\ u_3(u, x) = 4 f_3(x + u) \end{cases} ⎩⎪⎨⎪⎧u1(u,x)=f1(x−3u)−2f2(x+2u)−3f3(x+u)u2(u,x)=5f2(x+2u)+4f3(x+u)u3(u,x)=4f3(x+u)
其中 f 1 , f 2 , f 3 f_1, f_2, f_3 f1,f2,f3 是任意可微函数。
4. 对于 A 4 = ( − 3 2 1 0 − 2 1 0 0 − 1 ) A_4 = \begin{pmatrix} -3 & 2 & 1 \\ 0 & -2 & 1 \\ 0 & 0 & -1 \end{pmatrix} A4=⎝⎛−3002−2011−1⎠⎞
- 特征值: λ 1 = − 3 \lambda_1 = -3 λ1=−3, λ 2 = − 2 \lambda_2 = -2 λ2=−2, λ 3 = − 1 \lambda_3 = -1 λ3=−1(全部实数且互异)。
- 特征向量:
- λ 1 = − 3 \lambda_1 = -3 λ1=−3: v 1 = ( 1 0 0 ) \mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} v1=⎝⎛100⎠⎞
- λ 2 = − 2 \lambda_2 = -2 λ2=−2: v 2 = ( 2 1 0 ) \mathbf{v}_2 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} v2=⎝⎛210⎠⎞
- λ 3 = − 1 \lambda_3 = -1 λ3=−1: v 3 = ( 3 2 2 ) \mathbf{v}_3 = \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} v3=⎝⎛322⎠⎞
- 通解:
U ( u , x ) = f 1 ( x + 3 u ) ( 1 0 0 ) + f 2 ( x + 2 u ) ( 2 1 0 ) + f 3 ( x + u ) ( 3 2 2 ) \mathbf{U}(u, x) = f_1(x + 3u) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + f_2(x + 2u) \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + f_3(x + u) \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} U(u,x)=f1(x+3u)⎝⎛100⎠⎞+f2(x+2u)⎝⎛210⎠⎞+f3(x+u)⎝⎛322⎠⎞
即分量形式:
{ u 1 ( u , x ) = f 1 ( x + 3 u ) + 2 f 2 ( x + 2 u ) + 3 f 3 ( x + u ) u 2 ( u , x ) = f 2 ( x + 2 u ) + 2 f 3 ( x + u ) u 3 ( u , x ) = 2 f 3 ( x + u ) \begin{cases} u_1(u, x) = f_1(x + 3u) + 2 f_2(x + 2u) + 3 f_3(x + u) \\ u_2(u, x) = f_2(x + 2u) + 2 f_3(x + u) \\ u_3(u, x) = 2 f_3(x + u) \end{cases} ⎩⎪⎨⎪⎧u1(u,x)=f1(x+3u)+2f2(x+2u)+3f3(x+u)u2(u,x)=f2(x+2u)+2f3(x+u)u3(u,x)=2f3(x+u)
其中 f 1 , f 2 , f 3 f_1, f_2, f_3 f1,f2,f3 是任意可微函数。
5. 对于 A 5 = ( 1 2 3 2 0 3 2 3 0 ) A_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 0 & 3 \\ 2 & 3 & 0 \end{pmatrix} A5=⎝⎛122203330⎠⎞
- 特征值: λ 1 = − 3 \lambda_1 = -3 λ1=−3, λ 2 = 2 + 11 \lambda_2 = 2 + \sqrt{11} λ2=2+11, λ 3 = 2 − 11 \lambda_3 = 2 - \sqrt{11} λ3=2−11(全部实数且互异)。
- 特征向量:
- λ 1 = − 3 \lambda_1 = -3 λ1=−3: v 1 = ( − 3 − 6 8 ) \mathbf{v}_1 = \begin{pmatrix} -3 \\ -6 \\ 8 \end{pmatrix} v1=⎝⎛−3−68⎠⎞
- λ 2 = 2 + 11 \lambda_2 = 2 + \sqrt{11} λ2=2+11: v 2 = ( 4 + 11 3 + 11 3 + 11 ) \mathbf{v}_2 = \begin{pmatrix} 4 + \sqrt{11} \\ 3 + \sqrt{11} \\ 3 + \sqrt{11} \end{pmatrix} v2=⎝⎛4+113+113+11⎠⎞
- λ 3 = 2 − 11 \lambda_3 = 2 - \sqrt{11} λ3=2−11: v 3 = ( 4 − 11 3 − 11 3 − 11 ) \mathbf{v}_3 = \begin{pmatrix} 4 - \sqrt{11} \\ 3 - \sqrt{11} \\ 3 - \sqrt{11} \end{pmatrix} v3=⎝⎛4−113−113−11⎠⎞
- 通解:
U ( u , x ) = f 1 ( x + 3 u ) ( − 3 − 6 8 ) + f 2 ( x − ( 2 + 11 ) u ) ( 4 + 11 3 + 11 3 + 11 ) + f 3 ( x − ( 2 − 11 ) u ) ( 4 − 11 3 − 11 3 − 11 ) \mathbf{U}(u, x) = f_1(x + 3u) \begin{pmatrix} -3 \\ -6 \\ 8 \end{pmatrix} + f_2(x - (2 + \sqrt{11})u) \begin{pmatrix} 4 + \sqrt{11} \\ 3 + \sqrt{11} \\ 3 + \sqrt{11} \end{pmatrix} + f_3(x - (2 - \sqrt{11})u) \begin{pmatrix} 4 - \sqrt{11} \\ 3 - \sqrt{11} \\ 3 - \sqrt{11} \end{pmatrix} U(u,x)=f1(x+3u)⎝⎛−3−68⎠⎞+f2(x−(2+11)u)⎝⎛4+113+113+11⎠⎞+f3(x−(2−11)u)⎝⎛4−113−113−11⎠⎞
即分量形式:
{ u 1 ( u , x ) = − 3 f 1 ( x + 3 u ) + ( 4 + 11 ) f 2 ( x − ( 2 + 11 ) u ) + ( 4 − 11 ) f 3 ( x − ( 2 − 11 ) u ) u 2 ( u , x ) = − 6 f 1 ( x + 3 u ) + ( 3 + 11 ) f 2 ( x − ( 2 + 11 ) u ) + ( 3 − 11 ) f 3 ( x − ( 2 − 11 ) u ) u 3 ( u , x ) = 8 f 1 ( x + 3 u ) + ( 3 + 11 ) f 2 ( x − ( 2 + 11 ) u ) + ( 3 − 11 ) f 3 ( x − ( 2 − 11 ) u ) \begin{cases} u_1(u, x) = -3 f_1(x + 3u) + (4 + \sqrt{11}) f_2(x - (2 + \sqrt{11})u) + (4 - \sqrt{11}) f_3(x - (2 - \sqrt{11})u) \\ u_2(u, x) = -6 f_1(x + 3u) + (3 + \sqrt{11}) f_2(x - (2 + \sqrt{11})u) + (3 - \sqrt{11}) f_3(x - (2 - \sqrt{11})u) \\ u_3(u, x) = 8 f_1(x + 3u) + (3 + \sqrt{11}) f_2(x - (2 + \sqrt{11})u) + (3 - \sqrt{11}) f_3(x - (2 - \sqrt{11})u) \end{cases} ⎩⎪⎨⎪⎧u1(u,x)=−3f1(x+3u)+(4+11)f2(x−(2+11)u)+(4−11)f3(x−(2−11)u)u2(u,x)=−6f1(x+3u)+(3+11)f2(x−(2+11)u)+(3−11)f3(x−(2−11)u)u3(u,x)=8f1(x+3u)+(3+11)f2(x−(2+11)u)+(3−11)f3(x−(2−11)u)
其中 f 1 , f 2 , f 3 f_1, f_2, f_3 f1,f2,f3 是任意可微函数, 11 ≈ 3.3166 \sqrt{11} \approx 3.3166 11≈3.3166。
总结
- 所有矩阵的特征值均为实数且互异,因此系统是严格双曲的,通解如上所示。
- “特征”在本题中主要指特征值 λ k \lambda_k λk,它们决定了特征曲线的斜率( d x / d u = λ k dx/du = \lambda_k dx/du=λk)。
- 通解中的任意函数 f k f_k fk 由初始条件或边界条件确定。