求解线性系统特征及通解

发布于:2025-06-30 ⋅ 阅读:(12) ⋅ 点赞:(0)

题目

求系统 U u + A U x = 0 U_u + A U_x = 0 Uu+AUx=0 的特征并写出通解,其中矩阵 A A A 如下:

A 1 = ( 3 2 1 0 2 1 0 0 1 ) , A 2 = ( 3 2 1 0 2 1 0 0 − 1 ) , A_1 = \begin{pmatrix} 3 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 3 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & -1 \end{pmatrix}, A1=300220111,A2=300220111,

A 3 = ( 3 2 1 0 − 2 1 0 0 − 1 ) , A 4 = ( − 3 2 1 0 − 2 1 0 0 − 1 ) , A_3 = \begin{pmatrix} 3 & 2 & 1 \\ 0 & -2 & 1 \\ 0 & 0 & -1 \end{pmatrix}, \quad A_4 = \begin{pmatrix} -3 & 2 & 1 \\ 0 & -2 & 1 \\ 0 & 0 & -1 \end{pmatrix}, A3=300220111,A4=300220111,

A 5 = ( 1 2 3 2 0 3 2 3 0 ) . A_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 0 & 3 \\ 2 & 3 & 0 \end{pmatrix}. A5=122203330.

解答

系统为 ∂ U ∂ u + A ∂ U ∂ x = 0 \frac{\partial \mathbf{U}}{\partial u} + A \frac{\partial \mathbf{U}}{\partial x} = 0 uU+AxU=0,其中 U = ( u 1 , u 2 , u 3 ) T \mathbf{U} = (u_1, u_2, u_3)^T U=(u1,u2,u3)T 是向量函数, u u u x x x 是自变量。

  • 特征:指矩阵 A A A 的特征值 λ \lambda λ,它们决定了特征曲线的方向。特征曲线由方程 x − λ u = 常数 x - \lambda u = \text{常数} xλu=常数 给出。
  • 通解:通过求解特征值问题和对角化(或类似方法)得到。通解形式为 U ( u , x ) = ∑ k f k ( x − λ k u ) v k \mathbf{U}(u, x) = \sum_{k} f_k(x - \lambda_k u) \mathbf{v}_k U(u,x)=kfk(xλku)vk,其中 λ k \lambda_k λk 是特征值, v k \mathbf{v}_k vk 是相应的特征向量, f k f_k fk 是任意可微函数。

下面针对每个矩阵 A A A 求解特征值并写出通解。


1. 对于 A 1 = ( 3 2 1 0 2 1 0 0 1 ) A_1 = \begin{pmatrix} 3 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A1=300220111

  • 特征值 λ 1 = 3 \lambda_1 = 3 λ1=3, λ 2 = 2 \lambda_2 = 2 λ2=2, λ 3 = 1 \lambda_3 = 1 λ3=1(全部实数且互异)。
  • 特征向量
    • λ 1 = 3 \lambda_1 = 3 λ1=3: v 1 = ( 1 0 0 ) \mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} v1=100
    • λ 2 = 2 \lambda_2 = 2 λ2=2: v 2 = ( − 2 1 0 ) \mathbf{v}_2 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} v2=210
    • λ 3 = 1 \lambda_3 = 1 λ3=1: v 3 = ( 1 − 2 2 ) \mathbf{v}_3 = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} v3=122
  • 通解
    U ( u , x ) = f 1 ( x − 3 u ) ( 1 0 0 ) + f 2 ( x − 2 u ) ( − 2 1 0 ) + f 3 ( x − u ) ( 1 − 2 2 ) \mathbf{U}(u, x) = f_1(x - 3u) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + f_2(x - 2u) \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} + f_3(x - u) \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} U(u,x)=f1(x3u)100+f2(x2u)210+f3(xu)122
    即分量形式:
    { u 1 ( u , x ) = f 1 ( x − 3 u ) − 2 f 2 ( x − 2 u ) + f 3 ( x − u ) u 2 ( u , x ) = f 2 ( x − 2 u ) − 2 f 3 ( x − u ) u 3 ( u , x ) = 2 f 3 ( x − u ) \begin{cases} u_1(u, x) = f_1(x - 3u) - 2 f_2(x - 2u) + f_3(x - u) \\ u_2(u, x) = f_2(x - 2u) - 2 f_3(x - u) \\ u_3(u, x) = 2 f_3(x - u) \end{cases} u1(u,x)=f1(x3u)2f2(x2u)+f3(xu)u2(u,x)=f2(x2u)2f3(xu)u3(u,x)=2f3(xu)
    其中 f 1 , f 2 , f 3 f_1, f_2, f_3 f1,f2,f3 是任意可微函数。

2. 对于 A 2 = ( 3 2 1 0 2 1 0 0 − 1 ) A_2 = \begin{pmatrix} 3 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & -1 \end{pmatrix} A2=300220111

  • 特征值 λ 1 = 3 \lambda_1 = 3 λ1=3, λ 2 = 2 \lambda_2 = 2 λ2=2, λ 3 = − 1 \lambda_3 = -1 λ3=1(全部实数且互异)。
  • 特征向量
    • λ 1 = 3 \lambda_1 = 3 λ1=3: v 1 = ( 1 0 0 ) \mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} v1=100
    • λ 2 = 2 \lambda_2 = 2 λ2=2: v 2 = ( − 2 1 0 ) \mathbf{v}_2 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} v2=210
    • λ 3 = − 1 \lambda_3 = -1 λ3=1: v 3 = ( 1 4 − 12 ) \mathbf{v}_3 = \begin{pmatrix} 1 \\ 4 \\ -12 \end{pmatrix} v3=1412
  • 通解
    U ( u , x ) = f 1 ( x − 3 u ) ( 1 0 0 ) + f 2 ( x − 2 u ) ( − 2 1 0 ) + f 3 ( x + u ) ( 1 4 − 12 ) \mathbf{U}(u, x) = f_1(x - 3u) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + f_2(x - 2u) \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} + f_3(x + u) \begin{pmatrix} 1 \\ 4 \\ -12 \end{pmatrix} U(u,x)=f1(x3u)100+f2(x2u)210+f3(x+u)1412
    即分量形式:
    { u 1 ( u , x ) = f 1 ( x − 3 u ) − 2 f 2 ( x − 2 u ) + f 3 ( x + u ) u 2 ( u , x ) = f 2 ( x − 2 u ) + 4 f 3 ( x + u ) u 3 ( u , x ) = − 12 f 3 ( x + u ) \begin{cases} u_1(u, x) = f_1(x - 3u) - 2 f_2(x - 2u) + f_3(x + u) \\ u_2(u, x) = f_2(x - 2u) + 4 f_3(x + u) \\ u_3(u, x) = -12 f_3(x + u) \end{cases} u1(u,x)=f1(x3u)2f2(x2u)+f3(x+u)u2(u,x)=f2(x2u)+4f3(x+u)u3(u,x)=12f3(x+u)
    其中 f 1 , f 2 , f 3 f_1, f_2, f_3 f1,f2,f3 是任意可微函数。

3. 对于 A 3 = ( 3 2 1 0 − 2 1 0 0 − 1 ) A_3 = \begin{pmatrix} 3 & 2 & 1 \\ 0 & -2 & 1 \\ 0 & 0 & -1 \end{pmatrix} A3=300220111

  • 特征值 λ 1 = 3 \lambda_1 = 3 λ1=3, λ 2 = − 2 \lambda_2 = -2 λ2=2, λ 3 = − 1 \lambda_3 = -1 λ3=1(全部实数且互异)。
  • 特征向量
    • λ 1 = 3 \lambda_1 = 3 λ1=3: v 1 = ( 1 0 0 ) \mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} v1=100
    • λ 2 = − 2 \lambda_2 = -2 λ2=2: v 2 = ( − 2 5 0 ) \mathbf{v}_2 = \begin{pmatrix} -2 \\ 5 \\ 0 \end{pmatrix} v2=250
    • λ 3 = − 1 \lambda_3 = -1 λ3=1: v 3 = ( − 3 4 4 ) \mathbf{v}_3 = \begin{pmatrix} -3 \\ 4 \\ 4 \end{pmatrix} v3=344
  • 通解
    U ( u , x ) = f 1 ( x − 3 u ) ( 1 0 0 ) + f 2 ( x + 2 u ) ( − 2 5 0 ) + f 3 ( x + u ) ( − 3 4 4 ) \mathbf{U}(u, x) = f_1(x - 3u) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + f_2(x + 2u) \begin{pmatrix} -2 \\ 5 \\ 0 \end{pmatrix} + f_3(x + u) \begin{pmatrix} -3 \\ 4 \\ 4 \end{pmatrix} U(u,x)=f1(x3u)100+f2(x+2u)250+f3(x+u)344
    即分量形式:
    { u 1 ( u , x ) = f 1 ( x − 3 u ) − 2 f 2 ( x + 2 u ) − 3 f 3 ( x + u ) u 2 ( u , x ) = 5 f 2 ( x + 2 u ) + 4 f 3 ( x + u ) u 3 ( u , x ) = 4 f 3 ( x + u ) \begin{cases} u_1(u, x) = f_1(x - 3u) - 2 f_2(x + 2u) - 3 f_3(x + u) \\ u_2(u, x) = 5 f_2(x + 2u) + 4 f_3(x + u) \\ u_3(u, x) = 4 f_3(x + u) \end{cases} u1(u,x)=f1(x3u)2f2(x+2u)3f3(x+u)u2(u,x)=5f2(x+2u)+4f3(x+u)u3(u,x)=4f3(x+u)
    其中 f 1 , f 2 , f 3 f_1, f_2, f_3 f1,f2,f3 是任意可微函数。

4. 对于 A 4 = ( − 3 2 1 0 − 2 1 0 0 − 1 ) A_4 = \begin{pmatrix} -3 & 2 & 1 \\ 0 & -2 & 1 \\ 0 & 0 & -1 \end{pmatrix} A4=300220111

  • 特征值 λ 1 = − 3 \lambda_1 = -3 λ1=3, λ 2 = − 2 \lambda_2 = -2 λ2=2, λ 3 = − 1 \lambda_3 = -1 λ3=1(全部实数且互异)。
  • 特征向量
    • λ 1 = − 3 \lambda_1 = -3 λ1=3: v 1 = ( 1 0 0 ) \mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} v1=100
    • λ 2 = − 2 \lambda_2 = -2 λ2=2: v 2 = ( 2 1 0 ) \mathbf{v}_2 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} v2=210
    • λ 3 = − 1 \lambda_3 = -1 λ3=1: v 3 = ( 3 2 2 ) \mathbf{v}_3 = \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} v3=322
  • 通解
    U ( u , x ) = f 1 ( x + 3 u ) ( 1 0 0 ) + f 2 ( x + 2 u ) ( 2 1 0 ) + f 3 ( x + u ) ( 3 2 2 ) \mathbf{U}(u, x) = f_1(x + 3u) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + f_2(x + 2u) \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + f_3(x + u) \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} U(u,x)=f1(x+3u)100+f2(x+2u)210+f3(x+u)322
    即分量形式:
    { u 1 ( u , x ) = f 1 ( x + 3 u ) + 2 f 2 ( x + 2 u ) + 3 f 3 ( x + u ) u 2 ( u , x ) = f 2 ( x + 2 u ) + 2 f 3 ( x + u ) u 3 ( u , x ) = 2 f 3 ( x + u ) \begin{cases} u_1(u, x) = f_1(x + 3u) + 2 f_2(x + 2u) + 3 f_3(x + u) \\ u_2(u, x) = f_2(x + 2u) + 2 f_3(x + u) \\ u_3(u, x) = 2 f_3(x + u) \end{cases} u1(u,x)=f1(x+3u)+2f2(x+2u)+3f3(x+u)u2(u,x)=f2(x+2u)+2f3(x+u)u3(u,x)=2f3(x+u)
    其中 f 1 , f 2 , f 3 f_1, f_2, f_3 f1,f2,f3 是任意可微函数。

5. 对于 A 5 = ( 1 2 3 2 0 3 2 3 0 ) A_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 0 & 3 \\ 2 & 3 & 0 \end{pmatrix} A5=122203330

  • 特征值 λ 1 = − 3 \lambda_1 = -3 λ1=3, λ 2 = 2 + 11 \lambda_2 = 2 + \sqrt{11} λ2=2+11 , λ 3 = 2 − 11 \lambda_3 = 2 - \sqrt{11} λ3=211 (全部实数且互异)。
  • 特征向量
    • λ 1 = − 3 \lambda_1 = -3 λ1=3: v 1 = ( − 3 − 6 8 ) \mathbf{v}_1 = \begin{pmatrix} -3 \\ -6 \\ 8 \end{pmatrix} v1=368
    • λ 2 = 2 + 11 \lambda_2 = 2 + \sqrt{11} λ2=2+11 : v 2 = ( 4 + 11 3 + 11 3 + 11 ) \mathbf{v}_2 = \begin{pmatrix} 4 + \sqrt{11} \\ 3 + \sqrt{11} \\ 3 + \sqrt{11} \end{pmatrix} v2=4+11 3+11 3+11
    • λ 3 = 2 − 11 \lambda_3 = 2 - \sqrt{11} λ3=211 : v 3 = ( 4 − 11 3 − 11 3 − 11 ) \mathbf{v}_3 = \begin{pmatrix} 4 - \sqrt{11} \\ 3 - \sqrt{11} \\ 3 - \sqrt{11} \end{pmatrix} v3=411 311 311
  • 通解
    U ( u , x ) = f 1 ( x + 3 u ) ( − 3 − 6 8 ) + f 2 ( x − ( 2 + 11 ) u ) ( 4 + 11 3 + 11 3 + 11 ) + f 3 ( x − ( 2 − 11 ) u ) ( 4 − 11 3 − 11 3 − 11 ) \mathbf{U}(u, x) = f_1(x + 3u) \begin{pmatrix} -3 \\ -6 \\ 8 \end{pmatrix} + f_2(x - (2 + \sqrt{11})u) \begin{pmatrix} 4 + \sqrt{11} \\ 3 + \sqrt{11} \\ 3 + \sqrt{11} \end{pmatrix} + f_3(x - (2 - \sqrt{11})u) \begin{pmatrix} 4 - \sqrt{11} \\ 3 - \sqrt{11} \\ 3 - \sqrt{11} \end{pmatrix} U(u,x)=f1(x+3u)368+f2(x(2+11 )u)4+11 3+11 3+11 +f3(x(211 )u)411 311 311
    即分量形式:
    { u 1 ( u , x ) = − 3 f 1 ( x + 3 u ) + ( 4 + 11 ) f 2 ( x − ( 2 + 11 ) u ) + ( 4 − 11 ) f 3 ( x − ( 2 − 11 ) u ) u 2 ( u , x ) = − 6 f 1 ( x + 3 u ) + ( 3 + 11 ) f 2 ( x − ( 2 + 11 ) u ) + ( 3 − 11 ) f 3 ( x − ( 2 − 11 ) u ) u 3 ( u , x ) = 8 f 1 ( x + 3 u ) + ( 3 + 11 ) f 2 ( x − ( 2 + 11 ) u ) + ( 3 − 11 ) f 3 ( x − ( 2 − 11 ) u ) \begin{cases} u_1(u, x) = -3 f_1(x + 3u) + (4 + \sqrt{11}) f_2(x - (2 + \sqrt{11})u) + (4 - \sqrt{11}) f_3(x - (2 - \sqrt{11})u) \\ u_2(u, x) = -6 f_1(x + 3u) + (3 + \sqrt{11}) f_2(x - (2 + \sqrt{11})u) + (3 - \sqrt{11}) f_3(x - (2 - \sqrt{11})u) \\ u_3(u, x) = 8 f_1(x + 3u) + (3 + \sqrt{11}) f_2(x - (2 + \sqrt{11})u) + (3 - \sqrt{11}) f_3(x - (2 - \sqrt{11})u) \end{cases} u1(u,x)=3f1(x+3u)+(4+11 )f2(x(2+11 )u)+(411 )f3(x(211 )u)u2(u,x)=6f1(x+3u)+(3+11 )f2(x(2+11 )u)+(311 )f3(x(211 )u)u3(u,x)=8f1(x+3u)+(3+11 )f2(x(2+11 )u)+(311 )f3(x(211 )u)
    其中 f 1 , f 2 , f 3 f_1, f_2, f_3 f1,f2,f3 是任意可微函数, 11 ≈ 3.3166 \sqrt{11} \approx 3.3166 11 3.3166

总结

  • 所有矩阵的特征值均为实数且互异,因此系统是严格双曲的,通解如上所示。
  • “特征”在本题中主要指特征值 λ k \lambda_k λk,它们决定了特征曲线的斜率( d x / d u = λ k dx/du = \lambda_k dx/du=λk)。
  • 通解中的任意函数 f k f_k fk 由初始条件或边界条件确定。