进阶向:基于Python的局域网聊天工具(端对端加密)

发布于:2025-07-27 ⋅ 阅读:(19) ⋅ 点赞:(0)

基于Python的局域网聊天工具(端对端加密)——从零开始实现

在现代互联网环境中,隐私和安全越来越受到重视。端对端加密(End-to-End Encryption, E2EE)技术可以确保只有通信的双方能够读取消息内容,即使是服务器也无法解密。本文将详细介绍如何用Python实现一个简单的局域网聊天工具,并为其添加端对端加密功能。

什么是端对端加密?

端对端加密是一种通信加密方式,消息在发送端加密后,只有接收端能够解密。中间的任何节点(如路由器、服务器等)都只能看到加密后的数据,无法获取原始消息内容。这种加密方式广泛应用于即时通讯工具中,如WhatsApp、Signal等。

项目概述

本项目将实现以下功能:

  • 基于Python的局域网聊天工具
  • 支持多客户端连接
  • 使用非对称加密(RSA)进行密钥交换
  • 使用对称加密(AES)加密通信内容
  • 简单的命令行界面
技术栈
  • 编程语言:Python 3.x
  • 网络库:socket、threading
  • 加密库:cryptography
  • 其他:argparse(参数解析)

核心模块解析

网络通信基础

局域网聊天工具的核心是网络通信。Python的socket库提供了低级别的网络接口,可以创建TCP或UDP连接。本项目中采用TCP协议,因为它能保证消息的可靠传输。

import socket

# 创建TCP socket
server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

TCP通信需要明确的客户端和服务器端。服务器监听特定端口,客户端主动连接服务器。在聊天工具中,每个用户既是客户端(发送消息)又是服务器(接收消息)。

多线程处理

为了实现同时接收和发送消息,需要使用多线程。Python的threading模块可以方便地创建和管理线程。

import threading

def receive_messages():
    while True:
        data = client_socket.recv(1024)
        print(f"Received: {data.decode()}")

# 创建接收消息的线程
receive_thread = threading.Thread(target=receive_messages)
receive_thread.start()

加密实现

加密部分分为两个阶段:密钥交换和消息加密。

  1. 密钥交换:使用RSA非对称加密。每个用户生成自己的RSA密钥对,公开公钥,保存私钥。当两个用户通信时,他们交换公钥,然后用对方的公钥加密一个随机的AES密钥(会话密钥)。

  2. 消息加密:使用AES对称加密。一旦会话密钥安全交换,后续通信都使用这个密钥进行加密解密,因为对称加密比非对称加密效率高很多。

from cryptography.hazmat.primitives.asymmetric import rsa, padding
from cryptography.hazmat.primitives import serialization, hashes
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.hazmat.backends import default_backend
import os

# 生成RSA密钥对
private_key = rsa.generate_private_key(
    public_exponent=65537,
    key_size=2048,
    backend=default_backend()
)
public_key = private_key.public_key()

# 生成AES密钥
aes_key = os.urandom(32)  # 256-bit key


详细实现步骤

1. 用户类设计

首先设计一个User类,包含用户的基本信息和加密相关操作。

class User:
    def __init__(self, name):
        self.name = name
        self.private_key = rsa.generate_private_key(
            public_exponent=65537,
            key_size=2048,
            backend=default_backend()
        )
        self.public_key = self.private_key.public_key()
        self.peer_public_key = None
        self.aes_key = None
        
    def serialize_public_key(self):
        return self.public_key.public_bytes(
            encoding=serialization.Encoding.PEM,
            format=serialization.PublicFormat.SubjectPublicKeyInfo
        )
        
    def deserialize_public_key(self, key_bytes):
        self.peer_public_key = serialization.load_pem_public_key(
            key_bytes,
            backend=default_backend()
        )

2. 密钥交换协议

设计一个简单的协议来交换公钥和会话密钥:

  1. 连接建立后,双方交换RSA公钥
  2. 一方生成AES密钥,用对方的公钥加密后发送
  3. 对方收到后用私钥解密获取AES密钥
  4. 后续通信使用AES加密
def perform_key_exchange(user, conn, is_initiator):
    # 交换公钥
    conn.sendall(user.serialize_public_key())
    peer_key_bytes = conn.recv(4096)
    user.deserialize_public_key(peer_key_bytes)
    
    if is_initiator:
        # 生成并发送AES密钥
        user.aes_key = os.urandom(32)
        encrypted_aes_key = user.peer_public_key.encrypt(
            user.aes_key,
            padding.OAEP(
                mgf=padding.MGF1(algorithm=hashes.SHA256()),
                algorithm=hashes.SHA256(),
                label=None
            )
        )
        conn.sendall(encrypted_aes_key)
    else:
        # 接收并解密AES密钥
        encrypted_aes_key = conn.recv(4096)
        user.aes_key = user.private_key.decrypt(
            encrypted_aes_key,
            padding.OAEP(
                mgf=padding.MGF1(algorithm=hashes.SHA256()),
                algorithm=hashes.SHA256(),
                label=None
            )
        )

3. 消息加密解密

实现AES加密解密功能:

def encrypt_message(key, message):
    iv = os.urandom(16)  # 初始向量
    cipher = Cipher(
        algorithms.AES(key),
        modes.CFB(iv),
        backend=default_backend()
    )
    encryptor = cipher.encryptor()
    ciphertext = encryptor.update(message.encode()) + encryptor.finalize()
    return iv + ciphertext
    
def decrypt_message(key, ciphertext):
    iv = ciphertext[:16]
    cipher = Cipher(
        algorithms.AES(key),
        modes.CFB(iv),
        backend=default_backend()
    )
    decryptor = cipher.decryptor()
    plaintext = decryptor.update(ciphertext[16:]) + decryptor.finalize()
    return plaintext.decode()

4. 服务器和客户端实现

将上述功能整合到服务器和客户端代码中:

def start_server(port):
    user = User("Server")
    with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
        s.bind(('0.0.0.0', port))
        s.listen()
        conn, addr = s.accept()
        perform_key_exchange(user, conn, False)
        
        # 启动接收消息线程
        def receive():
            while True:
                data = conn.recv(4096)
                if not data: break
                message = decrypt_message(user.aes_key, data)
                print(f"Received: {message}")
        
        threading.Thread(target=receive, daemon=True).start()
        
        # 发送消息
        while True:
            message = input("> ")
            encrypted = encrypt_message(user.aes_key, message)
            conn.sendall(encrypted)

def start_client(host, port):
    user = User("Client")
    with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
        s.connect((host, port))
        perform_key_exchange(user, s, True)
        
        # 启动接收消息线程
        def receive():
            while True:
                data = s.recv(4096)
                if not data: break
                message = decrypt_message(user.aes_key, data)
                print(f"Received: {message}")
        
        threading.Thread(target=receive, daemon=True).start()
        
        # 发送消息
        while True:
            message = input("> ")
            encrypted = encrypt_message(user.aes_key, message)
            s.sendall(encrypted)


完整源代码

import socket
import threading
import argparse
from cryptography.hazmat.primitives.asymmetric import rsa, padding
from cryptography.hazmat.primitives import serialization, hashes
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.hazmat.backends import default_backend
import os

class User:
    def __init__(self, name):
        self.name = name
        self.private_key = rsa.generate_private_key(
            public_exponent=65537,
            key_size=2048,
            backend=default_backend()
        )
        self.public_key = self.private_key.public_key()
        self.peer_public_key = None
        self.aes_key = None
        
    def serialize_public_key(self):
        return self.public_key.public_bytes(
            encoding=serialization.Encoding.PEM,
            format=serialization.PublicFormat.SubjectPublicKeyInfo
        )
        
    def deserialize_public_key(self, key_bytes):
        self.peer_public_key = serialization.load_pem_public_key(
            key_bytes,
            backend=default_backend()
        )

def encrypt_message(key, message):
    iv = os.urandom(16)
    cipher = Cipher(
        algorithms.AES(key),
        modes.CFB(iv),
        backend=default_backend()
    )
    encryptor = cipher.encryptor()
    ciphertext = encryptor.update(message.encode()) + encryptor.finalize()
    return iv + ciphertext
    
def decrypt_message(key, ciphertext):
    iv = ciphertext[:16]
    cipher = Cipher(
        algorithms.AES(key),
        modes.CFB(iv),
        backend=default_backend()
    )
    decryptor = cipher.decryptor()
    plaintext = decryptor.update(ciphertext[16:]) + decryptor.finalize()
    return plaintext.decode()

def perform_key_exchange(user, conn, is_initiator):
    conn.sendall(user.serialize_public_key())
    peer_key_bytes = conn.recv(4096)
    user.deserialize_public_key(peer_key_bytes)
    
    if is_initiator:
        user.aes_key = os.urandom(32)
        encrypted_aes_key = user.peer_public_key.encrypt(
            user.aes_key,
            padding.OAEP(
                mgf=padding.MGF1(algorithm=hashes.SHA256()),
                algorithm=hashes.SHA256(),
                label=None
            )
        )
        conn.sendall(encrypted_aes_key)
    else:
        encrypted_aes_key = conn.recv(4096)
        user.aes_key = user.private_key.decrypt(
            encrypted_aes_key,
            padding.OAEP(
                mgf=padding.MGF1(algorithm=hashes.SHA256()),
                algorithm=hashes.SHA256(),
                label=None
            )
        )

def start_server(port):
    user = User("Server")
    with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
        s.bind(('0.0.0.0', port))
        s.listen()
        print(f"Server listening on port {port}")
        conn, addr = s.accept()
        print(f"Connected by {addr}")
        perform_key_exchange(user, conn, False)
        
        def receive():
            while True:
                data = conn.recv(4096)
                if not data: break
                message = decrypt_message(user.aes_key, data)
                print(f"Received: {message}")
        
        threading.Thread(target=receive, daemon=True).start()
        
        while True:
            message = input("> ")
            encrypted = encrypt_message(user.aes_key, message)
            conn.sendall(encrypted)

def start_client(host, port):
    user = User("Client")
    with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
        s.connect((host, port))
        perform_key_exchange(user, s, True)
        
        def receive():
            while True:
                data = s.recv(4096)
                if not data: break
                message = decrypt_message(user.aes_key, data)
                print(f"Received: {message}")
        
        threading.Thread(target=receive, daemon=True).start()
        
        while True:
            message = input("> ")
            encrypted = encrypt_message(user.aes_key, message)
            s.sendall(encrypted)

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Secure LAN Chat")
    parser.add_argument("-s", "--server", action="store_true", help="Run as server")
    parser.add_argument("-c", "--client", action="store_true", help="Run as client")
    parser.add_argument("--host", type=str, default="localhost", help="Server host")
    parser.add_argument("--port", type=int, default=12345, help="Port number")
    args = parser.parse_args()
    
    if args.server:
        start_server(args.port)
    elif args.client:
        start_client(args.host, args.port)
    else:
        print("Please specify --server or --client")


使用说明

  1. 在一台机器上运行服务器:

    python chat.py --server --port 12345
    

  2. 在另一台机器上运行客户端(确保在同一局域网):

    python chat.py --client --host <服务器IP> --port 12345
    

  3. 开始聊天,输入的消息会自动加密传输


安全注意事项

  1. 本项目仅用于学习目的,不应用于生产环境
  2. 实际应用中需要更完善的密钥管理和身份验证机制
  3. 加密实现使用了cryptography库,这是Python中比较可靠的加密库
  4. 确保Python环境是最新版本,避免已知的安全漏洞

通过这个项目,您可以学习到网络编程、多线程、加密算法等多项技术。希望这篇教程能帮助您理解端对端加密的基本原理和实现方法。


网站公告

今日签到

点亮在社区的每一天
去签到