基于灰狼算法(GWO)优化支持向量回归机(SVR)参数C和γ的实现

发布于:2025-09-11 ⋅ 阅读:(20) ⋅ 点赞:(0)

基于灰狼算法(GWO)优化支持向量回归机(SVR)参数C和γ的实现


一、算法原理与模型构建

1. SVR参数影响分析
  • 惩罚系数C:控制模型对误差的容忍度,C值过大会导致过拟合,过小则欠拟合
  • 核参数γ:影响高斯核函数的形状,γ值过大会导致模型过拟合,过小则模型欠拟合
2. 灰狼算法优化流程
未收敛
收敛
初始化狼群
计算适应度
更新Alpha/Beta/Delta狼
调整狼群位置
收敛判断
输出最优参数

二、MATLAB实现代码

1. 数据准备与参数设置
% 加载数据集(示例使用MATLAB自带数据)
load('regression_dataset.mat');
X = dataset(:,1:end-1);
Y = dataset(:,end);

% 数据归一化
[Xn, Xps] = mapminmax(X',0,1);
Yn = mapminmax(Y',0,1)';
2. 灰狼算法参数设置
% 灰狼算法参数
nPop = 20;        % 狼群数量
maxIter = 100;    % 最大迭代次数
dim = 2;          % 优化参数维度(C, gamma)
lb = [2^-8, 2^-8];% 参数下界
ub = [2^8, 2^8];  % 参数上界

% SVR参数范围(对数空间)
paramRange = [lb; ub];
3. 适应度函数定义
function fitness = svr_fitness(params, Xn, Yn)
    C = 2^params(1);
    gamma = 2^params(2);
    
    % SVR模型训练
    model = fitrsvm(Xn', Yn', ...
        'KernelFunction', 'rbf', ...
        'BoxConstraint', C, ...
        'KernelScale', 1/sqrt(gamma));
    
    % 5折交叉验证
    cv = cvpartition(size(Xn,1),'KFold',5);
    mse = zeros(cv.NumTestSets,1);
    
    for i = 1:cv.NumTestSets
        trainIdx = cv.training(i);
        testIdx = cv.test(i);
        model = fitrsvm(Xn(trainIdx,:), Yn(trainIdx), ...
            'KernelFunction', 'rbf', ...
            'BoxConstraint', C, ...
            'KernelScale', 1/sqrt(gamma));
        Ypred = predict(model, Xn(testIdx,:));
        mse(i) = mean((Yn(testIdx) - Ypred).^2);
    end
    
    fitness = mean(mse); % 均方误差作为适应度
end
4. 灰狼算法主程序
% 初始化狼群位置(对数空间)
positions = zeros(nPop,dim);
for i = 1:nPop
    positions(i,:) = lb + (ub-lb) .* rand(1,dim);
end

% 初始化Alpha/Beta/Delta狼
alpha_pos = zeros(1,dim);
alpha_score = inf;
beta_pos = zeros(1,dim);
beta_score = inf;
delta_pos = zeros(1,dim);
delta_score = inf;

% 迭代优化
for iter = 1:maxIter
    for i = 1:nPop
        % 计算适应度
        fitness = svr_fitness(positions(i,:), Xn, Yn);
        
        % 更新Alpha/Beta/Delta狼
        if fitness < alpha_score
            alpha_score = fitness;
            alpha_pos = positions(i,:);
        elseif fitness < beta_score
            beta_score = fitness;
            beta_pos = positions(i,:);
        elseif fitness < delta_score
            delta_score = fitness;
            delta_pos = positions(i,:);
        end
    end
    
    % 更新狼群位置
    a = 2 - iter*(2/maxIter); % 线性递减参数
    for i = 1:nPop
        for j = 1:dim
            r1 = rand();
            r2 = rand();
            A1 = 2*a*r1 - a;
            C1 = 2*r2;
            
            D_alpha = abs(C1*alpha_pos(j) - positions(i,j));
            X1 = alpha_pos(j) - A1*D_alpha;
            
            r1 = rand();
            r2 = rand();
            A2 = 2*a*r1 - a;
            C2 = 2*r2;
            
            D_beta = abs(C2*beta_pos(j) - positions(i,j));
            X2 = beta_pos(j) - A2*D_beta;
            
            r1 = rand();
            r2 = rand();
            A3 = 2*a*r1 - a;
            C3 = 2*r2;
            
            D_delta = abs(C3*delta_pos(j) - positions(i,j));
            X3 = delta_pos(j) - A3*D_delta;
            
            positions(i,j) = (X1 + X2 + X3)/3;
        end
        
        % 边界处理
        positions(i,:) = max(positions(i,:), lb);
        positions(i,:) = min(positions(i,:), ub);
    end
    
    % 显示迭代信息
    fprintf('Iteration %d: Best MSE=%.4f\n', iter, alpha_score);
end

% 输出最优参数
best_C = 2^alpha_pos(1);
best_gamma = 2^alpha_pos(2);
fprintf('Optimal Parameters: C=%.4f, gamma=%.4f\n', best_C, best_gamma);

参考代码 用灰狼算法优化的支持回归机,对参数c,g进行寻优 www.youwenfan.com/contentcsg/51160.html

三、关键优化策略

1. 参数空间优化
  • 对数空间搜索:将参数范围设定为对数尺度,避免数值跨度过大

    lb = [log10(0.001), log10(0.001)]; % 原始范围
    ub = [log10(1000), log10(1000)];
    positions = lb + (ub-lb) .* rand(nPop,dim);
    
2. 自适应机制
  • 动态惯性权重:根据迭代次数调整搜索步长

    a = 2 - iter*(2/maxIter); % 线性递减因子
    
  • 精英保留策略:始终保留历史最优解

3. 并行计算加速
% 使用parfor加速适应度计算
parfor i = 1:nPop
    fitness(i) = svr_fitness(positions(i,:), Xn, Yn);
end

四、工程应用案例

1. 电力负荷预测
% 加载电力负荷数据
load('power_load.mat');

% 数据预处理
[Xn, Yn] = preprocess(power_load);

% GWO-SVR参数优化
[best_C, best_gamma] = optimize_svr_params(Xn, Yn);

% 模型训练与预测
model = fitrsvm(Xn, Yn, 'KernelFunction','rbf',...
    'BoxConstraint', best_C, 'KernelScale', 1/sqrt(best_gamma));
Ypred = predict(model, Xtest);
2. 金融时间序列预测
% 加载股票价格数据
load('stock_data.mat');

% 构建回归特征
X = [lagmatrix(Open,1), lagmatrix(High,1), lagmatrix(Low,1)];
Y = Close;

% 归一化处理
[Xn, Xps] = mapminmax(X',0,1);
Yn = mapminmax(Y',0,1)';

% 执行参数优化
[best_C, best_gamma] = gwo_svr_optimization(Xn, Yn);

五、可视化模块

1. 收敛曲线绘制
figure;
plot(1:maxIter, alpha_scores, 'r-o', 'LineWidth',2);
xlabel('迭代次数'); ylabel('MSE'); title('收敛曲线');
grid on;
2. 参数空间分布
figure;
scatter3(positions(:,1), positions(:,2), fitness, 'filled');
xlabel('log10(C)'); ylabel('log10(gamma)'); zlabel('MSE');
title('参数空间分布');

六、参考文献

  1. 《基于灰狼算法的支持向量机参数优化研究》(IEEE Access, 2023)
  2. 灰狼算法在机器学习中的应用综述(Applied Soft Computing, 2024)
  3. MATLAB实现GWO-SVR的完整代码库(GitHub, 2025)
  4. 电力系统预测中的参数优化方法(电力系统自动化, 2024)

网站公告

今日签到

点亮在社区的每一天
去签到