矩阵分解可以得到简化的乘积矩阵,可以简化后续的计算与处理度
2.1.2 奇异值分解SVD
a. 正SVD
设 A = A m × n , r ( A ) > 0 , 正 奇 值 λ 1 , ⋯ , λ r , 则 有 分 解 A = P Δ Q H 其 中 Δ = ( λ 1 ⋱ λ r ) , P m × r , Q n × r 为 半 U 阵 , P H P = I r = Q H Q 可 写 正 S V D 公 式 A = P ( λ 1 ⋱ λ r ) Q H \begin{aligned} &设A=A_{m\times n},r(A)>0,正奇值\sqrt{\lambda_1},\cdots,\sqrt{\lambda_r},则有分解A=P\Delta Q^H\\ &其中\Delta=\left( \begin{matrix} &\sqrt{\lambda_1}&&\\ &&\ddots&\\ &&&\sqrt{\lambda_r} \end{matrix} \right),P_{m\times r},Q_{n\times r}为半U阵,P^HP=I_r=Q^HQ\\ &可写正SVD公式A=P\left( \begin{matrix} &\sqrt{\lambda_1}&&\\ &&\ddots&\\ &&&\sqrt{\lambda_r} \end{matrix} \right)Q^H \end{aligned} 设A=Am×n,r(A)>0,正奇值λ1,⋯,λr,则有分解A=PΔQH其中Δ=⎝⎛λ1⋱λr⎠⎞,Pm×r,Qn×r为半U阵,PHP=Ir=QHQ可写正SVD公式A=P⎝⎛λ1⋱λr⎠⎞QH
证明
- P m × r , Q n × r P_{m\times r},Q_{n\times r} Pm×r,Qn×r 的构造
A H A 为 H e r m i t e 阵 , 由 H e r m i t e 分 解 定 理 , 存 在 U 阵 使 U H ( A H A ) U = ( λ 1 ⋱ λ n ) n × n , , 且 A H A 为 半 正 定 阵 , 有 λ 1 , ⋯ , λ r > 0 , λ r + 1 = ⋯ = λ n = 0 , r ( A ) = r 而 U 的 列 向 量 ( q 1 , q 2 , ⋯ , q n ) 为 A H A 的 特 征 向 量 且 A H A q 1 = λ 1 q 1 , ⋯ , A H A q r = λ r q r , A H A q r + 1 = 0 , A H A q n = 0 令 Q = ( q 1 , q 2 , ⋯ , q r ) n × r , P = ( A q 1 ∣ A q 1 ∣ , ⋯ , A q r ∣ A q r ∣ ) m × r \begin{aligned} &A^HA为Hermite阵,由Hermite分解定理,存在U阵\\ &使U^H(A^HA)U=\left( \begin{matrix} &\lambda_1&&\\ &&\ddots&\\ &&&\lambda_n \end{matrix} \right)_{n\times n},\\ &,且A^HA为半正定阵,有\lambda_1,\cdots,\lambda_r>0,\lambda_{r+1}=\cdots=\lambda_n=0,r(A)=r\\ &而U的列向量(q_1,q_2,\cdots,q_n)为 A^HA 的特征向量\\ &且A^HAq_1=\lambda_1q_1,\cdots,A^HAq_r=\lambda_rq_r,A^HAq_{r+1}=0,A^HAq_{n}=0\\\\ &令Q=(q_1,q_2,\cdots,q_r)_{n\times r},P=(\frac{Aq_1}{\vert Aq_1\vert},\cdots,\frac{Aq_r}{\vert Aq_r\vert})_{m\times r} \end{aligned} AHA为Hermite阵,由Hermite分解定理,存在U阵使UH(AHA)U=⎝⎛λ1⋱λn⎠⎞n×n,,且AHA为半正定阵,有λ1,⋯,λr>0,λr+1=⋯=λn=0,r(A)=r而U的列向量(q1,q2,⋯,qn)为AHA的特征向量且AHAq1=λ1q1,⋯,AHAqr=λrqr,AHAqr+1=0,AHAqn=0令Q=(q1,q2,⋯,qr)n×r,P=(∣Aq1∣Aq1,⋯,∣Aqr∣Aqr)m×r
P与Q为半U阵
已 知 Q 中 列 向 量 为 U 阵 的 r 个 非 零 列 向 量 , 则 Q 为 半 U 阵 而 ( A q 1 , A q 2 ) = ( A q 2 ) H ( A q 1 ) = q 2 A H A q 1 = λ 1 q 2 H q 1 = ( λ 1 q 1 , q 2 ) = 0 同 理 , A q i 与 A q j 都 正 交 ∣ A q 1 ∣ 2 = ( A q 1 ) H ( A q 1 ) = q 1 H A H A q 1 = λ 1 q 1 H q 1 = λ 1 ≥ 0 ⇒ P = ( A q 1 ∣ A q 1 ∣ , A q 2 ∣ A q 2 ∣ , ⋯ , A q r ∣ A q r ∣ ) = ( A q 1 λ 1 , A q 2 λ 2 , ⋯ , A q r λ r ) 即 P 阵 为 半 U 阵 \begin{aligned} &已知Q中列向量为U阵的r个非零列向量,则Q为半U阵\\ &而(Aq_1,Aq_2)=(Aq_2)^H(Aq_1)=q_2A^HAq_1=\lambda_1q_2^Hq_1=(\lambda_1q_1,q_2)=0\\ &同理,Aq_i与Aq_j都正交\\ &\vert Aq_1\vert^2=(Aq_1)^H(Aq_1)=q_1^HA^HAq_1=\lambda_1q_1^Hq_1=\lambda_1\ge0\\ &\quad\quad\quad\Rightarrow P=\left(\frac{Aq_1}{\vert Aq_1 \vert},\frac{Aq_2}{\vert Aq_2 \vert},\cdots,\frac{Aq_r}{\vert Aq_r \vert}\right)=\left(\frac{Aq_1}{\sqrt{\lambda_1}},\frac{Aq_2}{\sqrt{\lambda_2}},\cdots,\frac{Aq_r}{\sqrt{\lambda_r}}\right)\\ &即P阵为半U阵 \end{aligned} 已知Q中列向量为U阵的r个非零列向量,则Q为半U阵而(Aq1,Aq2)=(Aq2)H(Aq1)=q2AHAq1=λ1q2Hq1=(λ1q1,q2)=0同理,Aqi与Aqj都正交∣Aq1∣2=(Aq1)H(Aq1)=q1HAHAq1=λ1q1Hq1=λ1≥0⇒P=(∣Aq1∣Aq1,∣Aq2∣Aq2,⋯,∣Aqr∣Aqr)=(λ1Aq1,λ2Aq2,⋯,λrAqr)即P阵为半U阵代入P,Q
P Δ Q H = ( A q 1 λ 1 , A q 2 λ 2 , ⋯ , A q r λ r ) ( λ 1 ⋱ λ r ) ( q 1 H q 2 H ⋮ q r H ) = ( A q 1 , A q 2 , ⋯ , A q r ) ( q 1 H q 2 H ⋮ q r H ) = ( A q 1 q 1 H , A q 2 q 2 H , , ⋯ , A q r q r H , ) \begin{aligned} &P\Delta Q^H=\left(\frac{Aq_1}{\sqrt{\lambda_1}},\frac{Aq_2}{\sqrt{\lambda_2}},\cdots,\frac{Aq_r}{\sqrt{\lambda_r}}\right)\left( \begin{matrix} &\sqrt{\lambda_1}&&\\ &&\ddots&\\ &&&\sqrt{\lambda_r} \end{matrix} \right)\left( \begin{matrix} q_1^H\\ q_2^H\\ \vdots\\ q_r^H \end{matrix} \right)\\ &=(Aq_1,Aq_2,\cdots,Aq_r)\left( \begin{matrix} q_1^H\\ q_2^H\\ \vdots\\ q_r^H \end{matrix} \right)=\left(Aq_1q_1^H,Aq_2q_2^H,,\cdots,Aq_rq_r^H,\right) \end{aligned} PΔQH=(λ1Aq1,λ2Aq2,⋯,λrAqr)⎝⎛λ1⋱λr⎠⎞⎝⎜⎜⎜⎛q1Hq2H⋮qrH⎠⎟⎟⎟⎞=(Aq1,Aq2,⋯,Aqr)⎝⎜⎜⎜⎛q1Hq2H⋮qrH⎠⎟⎟⎟⎞=(Aq1q1H,Aq2q2H,,⋯,AqrqrH,)验证 ( A q 1 q 1 H , A q 2 q 2 H , , ⋯ , A q r q r H , ) = A \left(Aq_1q_1^H,Aq_2q_2^H,,\cdots,Aq_rq_r^H,\right)=A (Aq1q1H,Aq2q2H,,⋯,AqrqrH,)=A
由 A H A 为 半 正 定 H e r m i t e 阵 , r ( A H A ) = r 由 同 解 定 理 , A H A x = 0 ⟺ A x = 0 A H A q r + 1 = ⋯ = A H A q n = 0 ⇒ A q r + 1 = ⋯ = A q n = 0 ⇒ A ( q r + 1 q r + 1 H + ⋯ + q n q n H ) = 0 而 A ( q 1 q 1 H + ⋯ + q r q r H + q r + 1 q r + 1 H + ⋯ + q n q n H ) = A I = A 即 A ( q 1 q 1 H + ⋯ + q r q r H ) = A \begin{aligned} &由A^HA为半正定Hermite阵,r(A^HA)=r\\ &由同解定理,A^HAx=0\iff Ax=0\\ &A^HAq_{r+1}=\cdots=A^HAq_{n}=0\Rightarrow Aq_{r+1}=\cdots=Aq_{n}=0\\ &\Rightarrow A(q_{r+1}q_{r+1}^H+\cdots+q_nq_n^H)=0\\ &而A(q_1q_1^H+\cdots+q_rq_r^H+q_{r+1}q_{r+1}^H+\cdots+q_nq_n^H)=AI=A\\ &即A(q_1q_1^H+\cdots+q_rq_r^H)=A \end{aligned} 由AHA为半正定Hermite阵,r(AHA)=r由同解定理,AHAx=0⟺Ax=0AHAqr+1=⋯=AHAqn=0⇒Aqr+1=⋯=Aqn=0⇒A(qr+1qr+1H+⋯+qnqnH)=0而A(q1q1H+⋯+qrqrH+qr+1qr+1H+⋯+qnqnH)=AI=A即A(q1q1H+⋯+qrqrH)=A
最后得证 正SVD公式, A = P Δ Q H = P ( λ 1 ⋱ λ r ) Q H A=P\Delta Q^H=P\left( \begin{matrix} &\sqrt{\lambda_1}&&\\ &&\ddots&\\ &&&\sqrt{\lambda_r} \end{matrix} \right)Q^H A=PΔQH=P⎝⎛λ1⋱λr⎠⎞QH
分解方法
求 A H A A^HA AHA 的特征值, λ 1 ≥ ⋯ , ≥ λ r > 0 \lambda_1\ge\cdots,\ge\lambda_r>0 λ1≥⋯,≥λr>0
正奇值为 λ 1 , ⋯ λ r \sqrt{\lambda_1},\cdots\sqrt{\lambda_r} λ1,⋯λr
求 λ 1 , ⋯ , λ r \lambda_1,\cdots,\lambda_r λ1,⋯,λr 的正交特征向量(不必单位化)
令列半U阵 Q = ( X 1 ∣ X 1 ∣ , ⋯ , X r ∣ X r ∣ ) , P = ( A X 1 ∣ A X 1 ∣ , ⋯ , A X r ∣ A X r ∣ ) Q=\left(\frac{X_1}{\vert X_1\vert},\cdots,\frac{X_r}{\vert X_r\vert}\right),P=\left(\frac{AX_1}{\vert AX_1\vert},\cdots,\frac{AX_r}{\vert AX_r\vert}\right) Q=(∣X1∣X1,⋯,∣Xr∣Xr),P=(∣AX1∣AX1,⋯,∣AXr∣AXr)
eg
A = ( 1 1 0 0 1 1 ) \begin{aligned} A=\left( \begin{matrix} 1&1\\ 0&0\\ 1&1 \end{matrix} \right) \end{aligned} A=⎝⎛101101⎠⎞
A H A = ( 2 2 2 2 ) , 由 A H A 为 秩 1 矩 阵 , 得 λ = { 4 , 0 } , 正 奇 值 为 ( λ ) = 2 而 λ 1 = 4 的 特 征 向 量 为 X 1 = ( 1 1 ) , 则 Δ = ( 2 ) 令 Q = ( X 1 ∣ X 1 ∣ ) = ( 1 2 1 2 ) , P = ( A X 1 ∣ A X 1 ∣ ) = ( 1 2 0 1 2 ) 则 A 的 正 S V D 为 A = P Δ Q H = ( 1 2 0 1 2 ) ( 2 ) ( 1 2 , 1 2 ) \begin{aligned} &A^HA=\left( \begin{matrix} 2&2\\ 2&2 \end{matrix} \right),由A^HA为秩1矩阵,得\lambda=\{4,0\},正奇值为\sqrt(\lambda)=\sqrt{2}\\ &而\lambda_1=4的特征向量为X_1=\left( \begin{matrix} 1\\1 \end{matrix} \right),则\Delta=\left( 2 \right)\\ &令Q=\left(\frac{X_1}{\vert X_1\vert}\right)=\left( \begin{matrix} \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} \end{matrix} \right),P=\left( \begin{matrix} \frac{AX_1}{\vert AX_1\vert} \end{matrix} \right)=\left( \begin{matrix} \frac{1}{\sqrt{2}}\\0\\\frac{1}{\sqrt{2}} \end{matrix} \right)\\ &则A的正SVD为A=P\Delta Q^H=\left( \begin{matrix} \frac{1}{\sqrt{2}}\\0\\\frac{1}{\sqrt{2}} \end{matrix} \right)\left(2\right)\left( \frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}} \right) \end{aligned} AHA=(2222),由AHA为秩1矩阵,得λ={4,0},正奇值为(λ)=2而λ1=4的特征向量为X1=(11),则Δ=(2)令Q=(∣X1∣X1)=(2121),P=(∣AX1∣AX1)=⎝⎛21021⎠⎞则A的正SVD为A=PΔQH=⎝⎛21021⎠⎞(2)(21,21)
考虑 B = ( 1 0 1 1 0 1 ) B=\left( \begin{matrix} 1&0&1\\1&0&1\\ \end{matrix} \right) B=(110011) 的正SVD
已 知 B = A H , 且 有 A 的 正 S V D , A = P Δ Q H = ( 1 2 0 1 2 ) ( 2 ) ( 1 2 , 1 2 ) B = ( P Δ Q H ) H = Q Δ P H = ( 1 2 1 2 ) ( 2 ) ( 1 2 , 0 , 1 2 ) \begin{aligned} &已知B=A^H,且有A的正SVD,A=P\Delta Q^H=\left( \begin{matrix} \frac{1}{\sqrt{2}}\\0\\\frac{1}{\sqrt{2}} \end{matrix} \right)\left(2\right)\left( \frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}} \right)\\ &B=(P\Delta Q^H)^H=Q\Delta P^H=\left( \begin{matrix} \frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}} \end{matrix} \right)\left(2\right)\left( \frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}} \right) \end{aligned} 已知B=AH,且有A的正SVD,A=PΔQH=⎝⎛21021⎠⎞(2)(21,21)B=(PΔQH)H=QΔPH=(2121)(2)(21,0,21)
b. SVD(将P,Q,D都扩充为方阵)
设 A = A m × n , r ( A ) > 0 , 正 奇 值 λ 1 , ⋯ , λ r > 0 , 则 有 分 解 A = W Δ V H 其 中 D = ( Δ 0 0 0 ) m × n , W m × m = ( P , P 1 ) , V n × n = ( Q , Q 1 ) 可 写 S V D 公 式 A = W ( Δ 0 0 0 ) V H = P Δ Q H , 其 中 ( λ 1 ⋱ λ r ) \begin{aligned} &设A=A_{m\times n},r(A)>0,正奇值\sqrt{\lambda_1},\cdots,\sqrt{\lambda_r}>0,则有分解A=W\Delta V^H\\ &其中D=\left( \begin{matrix} \Delta&0\\ 0&0 \end{matrix} \right)_{m\times n},W_{m\times m}=(P,P_1),V_{n\times n}=(Q,Q_1)\\ &可写SVD公式A=W\left( \begin{matrix} \Delta&0\\ 0&0 \end{matrix} \right)V^H=P\Delta Q^H,其中\left( \begin{matrix} \sqrt{\lambda_1}&&\\ &\ddots&\\ &&\sqrt{\lambda_r} \end{matrix} \right) \end{aligned} 设A=Am×n,r(A)>0,正奇值λ1,⋯,λr>0,则有分解A=WΔVH其中D=(Δ000)m×n,Wm×m=(P,P1),Vn×n=(Q,Q1)可写SVD公式A=W(Δ000)VH=PΔQH,其中⎝⎛λ1⋱λr⎠⎞
证明:
由 正 S V D : A = P Δ Q H , 分 别 把 P , Q 扩 充 为 U 阵 , 即 W = ( P , P 1 ) , V = ( Q , Q 1 ) , V H = ( Q H A 1 H ) , 则 W D V H = ( P , P 1 ) ( Δ 0 0 0 ) ( Q H A 1 H ) = ( P Δ 0 ) ( Q H A 1 H ) = P Δ Q H \begin{aligned} &由正SVD:A=P\Delta Q^H,分别把P,Q扩充为U阵,即W=(P,P_1),V=(Q,Q_1),\\ &V^H=\left( \begin{matrix} Q^H\\ A_1^H \end{matrix} \right),则WDV^H=(P,P_1)\left( \begin{matrix} \Delta&0\\ 0&0 \end{matrix} \right)\left( \begin{matrix} Q^H\\ A_1^H \end{matrix} \right)=\left( \begin{matrix} P\Delta\quad 0\\ \end{matrix} \right)\left( \begin{matrix} Q^H\\ A_1^H \end{matrix} \right)=P\Delta Q^H \end{aligned} 由正SVD:A=PΔQH,分别把P,Q扩充为U阵,即W=(P,P1),V=(Q,Q1),VH=(QHA1H),则WDVH=(P,P1)(Δ000)(QHA1H)=(PΔ0)(QHA1H)=PΔQH
分解方法
求 A H A A^HA AHA 的特征值, λ 1 ≥ ⋯ , ≥ λ r > 0 \lambda_1\ge\cdots,\ge\lambda_r>0 λ1≥⋯,≥λr>0
正奇值为 λ 1 , ⋯ λ r \sqrt{\lambda_1},\cdots\sqrt{\lambda_r} λ1,⋯λr
求 λ 1 , ⋯ , λ r \lambda_1,\cdots,\lambda_r λ1,⋯,λr 的正交特征向量(不必单位化)
令列U半阵 Q = ( X 1 ∣ X 1 ∣ , ⋯ , X r ∣ X r ∣ ) , P = ( A X 1 ∣ A X 1 ∣ , ⋯ , A X r ∣ A X r ∣ ) Q=\left(\frac{X_1}{\vert X_1\vert},\cdots,\frac{X_r}{\vert X_r\vert}\right),P=\left(\frac{AX_1}{\vert AX_1\vert},\cdots,\frac{AX_r}{\vert AX_r\vert}\right) Q=(∣X1∣X1,⋯,∣Xr∣Xr),P=(∣AX1∣AX1,⋯,∣AXr∣AXr) ,则有正SVD: A = P Δ Q H A=P\Delta Q^H A=PΔQH
将P,Q扩充为W,V 扩充方法不唯一 由证明可知,不管 P 1 , Q 1 P_1,Q_1 P1,Q1 为何,都会被消去
得SVD公式 A = W D V H A=WDV^H A=WDVH
eg
A = ( 1 1 0 0 1 1 ) \begin{aligned} A=\left( \begin{matrix} 1&1\\ 0&0\\ 1&1 \end{matrix} \right) \end{aligned} A=⎝⎛101101⎠⎞
扩 充 为 两 个 U 阵 V = ( Q , X ) = ( 1 2 1 2 1 2 − 1 2 ) , W = ( P , Y ) = ( 1 2 0 1 2 0 0 0 1 2 0 − 1 2 ) 则 有 奇 异 分 解 S V D , A = ( 1 2 0 1 2 0 0 0 1 2 0 − 1 2 ) ( 2 0 0 0 0 0 ) ( 1 2 1 2 1 2 − 1 2 ) \begin{aligned} &扩充为两个U阵V=\left(Q,X\right)=\left( \begin{matrix} \frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}}&-\frac{1}{\sqrt{2}} \end{matrix} \right),W=\left(P,Y\right)=\left( \begin{matrix} \frac{1}{\sqrt{2}}&0&\frac{1}{\sqrt{2}}\\ 0&0&0\\ \frac{1}{\sqrt{2}}&0&-\frac{1}{\sqrt{2}} \end{matrix} \right)\\ &则有奇异分解SVD,A=\left( \begin{matrix} \frac{1}{\sqrt{2}}&0&\frac{1}{\sqrt{2}}\\ 0&0&0\\ \frac{1}{\sqrt{2}}&0&-\frac{1}{\sqrt{2}} \end{matrix} \right)\left( \begin{matrix} 2&0\\ 0&0\\ 0&0 \end{matrix} \right)\left( \begin{matrix} \frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}}&-\frac{1}{\sqrt{2}} \end{matrix} \right) \end{aligned} 扩充为两个U阵V=(Q,X)=(212121−21),W=(P,Y)=⎝⎛21021000210−21⎠⎞则有奇异分解SVD,A=⎝⎛21021000210−21⎠⎞⎝⎛200000⎠⎞(212121−21)
A = ( 2 i 1 1 i 1 i ) \begin{aligned} A=\left( \begin{matrix} 2i&1\\ 1&i\\ 1&i \end{matrix} \right) \end{aligned} A=⎝⎛2i111ii⎠⎞
A H A = ( − 2 i 1 1 1 − i − i ) ( 2 i 1 1 i 1 i ) = ( 6 0 0 3 ) , 可 知 正 奇 值 S ( A ) + = { 6 , 3 } λ 1 = 6 , X 1 = ( 1 0 ) , A X 1 = ( 2 i 1 1 ) ∣ A X 1 ∣ = 6 ; λ 2 = 3 , X 2 = ( 0 1 ) , A X 2 = ( 1 i i ) 令 Q = ( X 1 , X 2 ) = ( 1 0 0 1 ) , P = ( A X 1 ∣ A X 1 ∣ , A X 2 ∣ A X 2 ∣ ) = ( 2 i 6 1 3 1 6 i 3 1 6 i 3 ) 则 有 正 S V D , A = P Δ Q H = ( 2 i 6 1 3 1 6 i 3 1 6 i 3 ) ( 6 3 ) ( 1 0 0 1 ) H 可 知 S V D , A = W D V = ( 2 i 6 1 3 0 1 6 i 3 1 2 1 6 i 3 − 1 2 ) ( 6 3 ) ( 1 0 0 1 ) H \begin{aligned} &A^HA=\left( \begin{matrix} -2i&1&1\\ 1&-i&-i \end{matrix} \right)\left( \begin{matrix} 2i&1\\ 1&i\\ 1&i \end{matrix} \right)=\left( \begin{matrix} 6&0\\ 0&3 \end{matrix} \right),可知正奇值S(A)_+=\{\sqrt{6},\sqrt{3}\}\\ &\lambda_1=6,X_1=\left( \begin{matrix} 1\\0 \end{matrix} \right),AX_1=\left( \begin{matrix} 2i\\1\\1 \end{matrix} \right)\vert AX_1\vert=\sqrt{6};\lambda_2=3,X_2=\left( \begin{matrix} 0\\1 \end{matrix} \right),AX_2=\left( \begin{matrix} 1\\i\\i \end{matrix} \right)\\ &令Q=\left( \begin{matrix} X_1,X_2 \end{matrix} \right)=\left( \begin{matrix} 1&0\\0&1 \end{matrix} \right),P=\left( \begin{matrix} \frac{AX_1}{\vert AX_1\vert},\frac{AX_2}{\vert AX_2\vert} \end{matrix} \right)=\left( \begin{matrix} \frac{2i}{\sqrt{6}}&\frac{1}{\sqrt{3}}\\ \frac{1}{\sqrt{6}}&\frac{i}{\sqrt{3}}\\ \frac{1}{\sqrt{6}}&\frac{i}{\sqrt{3}} \end{matrix} \right)\\ &则有正SVD,A=P\Delta Q^H=\left( \begin{matrix} \frac{2i}{\sqrt{6}}&\frac{1}{\sqrt{3}}\\ \frac{1}{\sqrt{6}}&\frac{i}{\sqrt{3}}\\ \frac{1}{\sqrt{6}}&\frac{i}{\sqrt{3}} \end{matrix} \right)\left( \begin{matrix} \sqrt{6}&\\ &\sqrt{3} \end{matrix} \right)\left( \begin{matrix} 1&0\\0&1 \end{matrix} \right)^H\\ &可知SVD,A=WDV=\left( \begin{matrix} \frac{2i}{\sqrt{6}}&\frac{1}{\sqrt{3}}&0\\ \frac{1}{\sqrt{6}}&\frac{i}{\sqrt{3}}&\frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{6}}&\frac{i}{\sqrt{3}}&-\frac{1}{\sqrt{2}} \end{matrix} \right)\left( \begin{matrix} \sqrt{6}&\\ &\sqrt{3} \end{matrix} \right)\left( \begin{matrix} 1&0\\0&1 \end{matrix} \right)^H \end{aligned} AHA=(−2i11−i1−i)⎝⎛2i111ii⎠⎞=(6003),可知正奇值S(A)+={6,3}λ1=6,X1=(10),AX1=⎝⎛2i11⎠⎞∣AX1∣=6;λ2=3,X2=(01),AX2=⎝⎛1ii⎠⎞令Q=(X1,X2)=(1001),P=(∣AX1∣AX1,∣AX2∣AX2)=⎝⎜⎛62i6161313i3i⎠⎟⎞则有正SVD,A=PΔQH=⎝⎜⎛62i6161313i3i⎠⎟⎞(63)(1001)H可知SVD,A=WDV=⎝⎜⎛62i6161313i3i021−21⎠⎟⎞(63)(1001)H
一个SVD解答
A = ( i 2 1 i 1 i ) , 求 正 S V D 与 S V D \begin{aligned} A=\left( \begin{matrix} i&2\\ 1&i\\1&i \end{matrix} \right),求正SVD与SVD \end{aligned} A=⎝⎛i112ii⎠⎞,求正SVD与SVD
∵ A H A = ( − i 1 1 2 − i − i ) ( i 2 1 i 1 i ) = ( 3 0 0 6 ) 为 对 角 阵 , 令 λ 1 = 3 , λ 2 = 6 A H 有 两 个 特 向 X 1 = ( 1 0 ) , X 2 = ( 0 1 ) ( 互 正 交 ) , 正 奇 值 为 λ 1 = 3 , λ 2 = 6 A X 1 = ( i 1 1 ) , A X 2 = ( 2 i i ) , ∣ A X 1 ∣ = 3 , ∣ A X 2 ∣ = 6 令 P = ( A X 1 ∣ A X 1 ∣ , A X 2 ∣ A X 2 ∣ ) = ( i 3 2 6 1 3 i 6 i 3 i 6 ) , 则 正 S V D A = P Δ Q H = ( i 3 2 6 1 3 i 6 i 3 i 6 ) ( 3 6 ) ( 1 0 0 1 ) \begin{aligned} &\because A^HA=\left( \begin{matrix} -i&1&1\\ 2&-i&-i \end{matrix} \right)\left( \begin{matrix} i&2\\ 1&i\\1&i \end{matrix} \right)=\left( \begin{matrix} 3&0\\ 0&6 \end{matrix} \right)为对角阵,令\lambda_1=3,\lambda_2=6\\ &A^H有两个特向X_1=\left( \begin{matrix} 1\\0 \end{matrix} \right),X_2=\left( \begin{matrix} 0\\1 \end{matrix} \right)(互正交),正奇值为 \sqrt{\lambda_1}=\sqrt{3},\sqrt{\lambda_2}=\sqrt{6}\\ &AX_1=\left( \begin{matrix} i\\1\\1 \end{matrix} \right),AX_2=\left( \begin{matrix} 2\\i\\i \end{matrix} \right),\vert AX_1 \vert=\sqrt{3},\vert AX_2 \vert=\sqrt{6}\\ &令P=\left( \frac{AX_1}{\vert AX_1\vert},\frac{AX_2}{\vert AX_2\vert} \right)=\left( \begin{matrix} \frac{i}{\sqrt{3}}&\frac{2}{\sqrt{6}}\\ \frac{1}{\sqrt{3}}&\frac{i}{\sqrt{6}}\\ \frac{i}{\sqrt{3}}&\frac{i}{\sqrt{6}}\\ \end{matrix} \right),则正SVD\\ &A=P\Delta Q^H=\left( \begin{matrix} \frac{i}{\sqrt{3}}&\frac{2}{\sqrt{6}}\\ \frac{1}{\sqrt{3}}&\frac{i}{\sqrt{6}}\\ \frac{i}{\sqrt{3}}&\frac{i}{\sqrt{6}}\\ \end{matrix} \right)\left( \begin{matrix} \sqrt{3}&\\ &\sqrt{6} \end{matrix} \right)\left( \begin{matrix} 1&0\\ 0&1 \end{matrix} \right) \end{aligned} ∵AHA=(−i21−i1−i)⎝⎛i112ii⎠⎞=(3006)为对角阵,令λ1=3,λ2=6AH有两个特向X1=(10),X2=(01)(互正交),正奇值为λ1=3,λ2=6AX1=⎝⎛i11⎠⎞,AX2=⎝⎛2ii⎠⎞,∣AX1∣=3,∣AX2∣=6令P=(∣AX1∣AX1,∣AX2∣AX2)=⎝⎜⎛3i313i626i6i⎠⎟⎞,则正SVDA=PΔQH=⎝⎜⎛3i313i626i6i⎠⎟⎞(36)(1001)
令 W = ( P , P 1 ) = ( i 3 2 6 0 1 3 i 6 1 2 i 3 i 6 − 1 2 ) , 或 ( i 3 2 6 0 1 3 i 6 i 2 i 3 i 6 − i 2 ) , 有 S V D , A = ( i 3 2 6 0 1 3 i 6 1 2 i 3 i 6 − 1 2 ) ( 3 0 0 6 0 0 ) ( 1 0 0 1 ) \begin{aligned} &令W=(P,P_1)=\left( \begin{matrix} \frac{i}{\sqrt{3}}&\frac{2}{\sqrt{6}}&0\\ \frac{1}{\sqrt{3}}&\frac{i}{\sqrt{6}}&\frac{1}{\sqrt{2}}\\ \frac{i}{\sqrt{3}}&\frac{i}{\sqrt{6}}&-\frac{1}{\sqrt{2}}\\ \end{matrix} \right),或\left( \begin{matrix} \frac{i}{\sqrt{3}}&\frac{2}{\sqrt{6}}&0\\ \frac{1}{\sqrt{3}}&\frac{i}{\sqrt{6}}&\frac{i}{\sqrt{2}}\\ \frac{i}{\sqrt{3}}&\frac{i}{\sqrt{6}}&-\frac{i}{\sqrt{2}}\\ \end{matrix} \right),\\ &有SVD,A=\left( \begin{matrix} \frac{i}{\sqrt{3}}&\frac{2}{\sqrt{6}}&0\\ \frac{1}{\sqrt{3}}&\frac{i}{\sqrt{6}}&\frac{1}{\sqrt{2}}\\ \frac{i}{\sqrt{3}}&\frac{i}{\sqrt{6}}&-\frac{1}{\sqrt{2}}\\ \end{matrix} \right)\left( \begin{matrix} \sqrt{3}&0\\ 0&\sqrt{6}\\ 0&0 \end{matrix} \right)\left( \begin{matrix} 1&0\\ 0&1 \end{matrix} \right) \end{aligned} 令W=(P,P1)=⎝⎜⎛3i313i626i6i021−21⎠⎟⎞,或⎝⎜⎛3i313i626i6i02i−2i⎠⎟⎞,有SVD,A=⎝⎜⎛3i313i626i6i021−21⎠⎟⎞⎝⎛300060⎠⎞(1001)
c. 当A是向量时
A = ( a 1 ⋮ a n ) ≠ 0 , 则 其 正 S V D \begin{aligned} &A=\left( \begin{matrix} a_1\\ \vdots\\ a_n \end{matrix} \right)\neq 0,则其正SVD \end{aligned} A=⎝⎜⎛a1⋮an⎠⎟⎞=0,则其正SVD
A H A = ( a 1 ‾ , ⋯ , a n ‾ ) ( a 1 ⋮ a n ) = ∣ a 1 ∣ 2 + ⋯ + ∣ a n ∣ 2 > 0 λ 1 = ∣ a 1 ∣ 2 + ⋯ + ∣ a n ∣ 2 , 令 Δ = ( λ 1 ) , Q = ( 1 ) X 1 = ( 1 ) , P = 1 ∣ a 1 ∣ 2 + ∣ a 2 ∣ 2 + ⋯ + ∣ a n ∣ n ( a 1 ⋮ a n ) , 正 S V D : A = P Δ Q H = 1 ∣ a 1 ∣ 2 + ∣ a 2 ∣ 2 + ⋯ + ∣ a n ∣ n ( a 1 ⋮ a n ) ( ∣ a 1 ∣ 2 + ∣ a 2 ∣ 2 + ⋯ + ∣ a n ) ( 1 ) \begin{aligned} &A^HA=\left(\overline{a_1},\cdots,\overline{a_n}\right)\left( \begin{matrix} a_1\\ \vdots\\ a_n \end{matrix} \right)=\vert a_1\vert^2+\cdots+\vert a_n\vert^2>0\\ &\lambda_1=\vert a_1 \vert^2+\cdots+\vert a_n\vert^2,令\Delta=\left(\sqrt{\lambda_1}\right),Q=(1)\\ &X_1=(1),P=\frac{1}{\sqrt{\vert a_1 \vert^2+\vert a_2 \vert^2+\cdots+\vert a_n \vert^n}}\left( \begin{matrix} a_1\\\vdots\\a_n \end{matrix} \right),\\ &正SVD:A=P\Delta Q^H=\\ &\frac{1}{\sqrt{\vert a_1 \vert^2+\vert a_2 \vert^2+\cdots+\vert a_n \vert^n}}\left( \begin{matrix} a_1\\\vdots\\a_n \end{matrix} \right)\left(\sqrt{\vert a_1 \vert^2+\vert a_2 \vert^2+\cdots+\vert a_n}\right)\left(1\right) \end{aligned} AHA=(a1,⋯,an)⎝⎜⎛a1⋮an⎠⎟⎞=∣a1∣2+⋯+∣an∣2>0λ1=∣a1∣2+⋯+∣an∣2,令Δ=(λ1),Q=(1)X1=(1),P=∣a1∣2+∣a2∣2+⋯+∣an∣n1⎝⎜⎛a1⋮an⎠⎟⎞,正SVD:A=PΔQH=∣a1∣2+∣a2∣2+⋯+∣an∣n1⎝⎜⎛a1⋮an⎠⎟⎞(∣a1∣2+∣a2∣2+⋯+∣an)(1)
d. A H A^H AH与A的SVD只需求一个
若 已 知 正 S V D , A = P Δ Q H , 可 得 A H 的 正 S V D = ( P Δ Q H ) H 若已知正SVD,A=P\Delta Q^H,可得A^H的正SVD=(P\Delta Q^H)^H 若已知正SVD,A=PΔQH,可得AH的正SVD=(PΔQH)H
A = ( 2 0 0 3 0 0 ) 与 B = A H 的 正 S V D 与 S V D \begin{aligned} A=\left( \begin{matrix} 2&0&0\\ 3&0&0 \end{matrix} \right)与B=A^H的正SVD与SVD \end{aligned} A=(230000)与B=AH的正SVD与SVD
2.1.3 正SVD的等价写法
A = P Δ Q H , Δ = ( s 1 ⋱ s r ) , 令 P = ( A X 1 ∣ A X 1 ∣ , ⋯ , A X r ∣ A X r ∣ ) = ( p 1 , ⋯ , p r ) Q = ( X 1 , ⋯ , X r ) = ( q 1 , ⋯ , q r ) , 则 有 正 S V D A = s 1 p 1 q 1 H + ⋯ + s r p r q r H \begin{aligned} &A=P\Delta Q^H,\Delta=\left( \begin{matrix} s_1&&\\ &\ddots&\\ &&s_r \end{matrix} \right),令P=\left(\frac{AX_1}{\vert AX_1\vert},\cdots,\frac{AX_r}{\vert AX_r\vert} \right)=\left(p_1,\cdots,p_r\right)\\ &Q=\left(X_1,\cdots,X_r\right)=\left(q_1,\cdots,q_r\right),则有正SVD\\ &A=s_1p_1q_1^H+\cdots+s_rp_rq_r^H \end{aligned} A=PΔQH,Δ=⎝⎛s1⋱sr⎠⎞,令P=(∣AX1∣AX1,⋯,∣AXr∣AXr)=(p1,⋯,pr)Q=(X1,⋯,Xr)=(q1,⋯,qr),则有正SVDA=s1p1q1H+⋯+srprqrH