1、 树型结构
1.1 概念
树是一种 非线性 的数据结构,它是由 n ( n>=0 )个有限结点组成一个具有层次关系的集合。 把它叫做树是因为它看 起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的 。它具有以下的特点:
- 有一个特殊的结点,称为根结点,根结点没有前驱结点
- 除根结点外,其余结点被分成M(M > 0)个互不相交的集合T1、T2、......、Tm,其中每一个集合 Ti (1 <= i<= m) 又是一棵与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
- 树是递归定义的。
注意:树形结构中,子树之间不能有交集,否则就不是树形结构
1.2 概念
结点的度 :一个结点含有子树的个数称为该结点的度; 如上图: A 的度为 6
树的度 :一棵树中,所有结点度的最大值称为树的度; 如上图:树的度为 6
叶子结点或终端结点 :度为 0 的结点称为叶结点; 如上图: B 、 C 、 H 、 I... 等节点为叶结点
双亲结点或父结点 :若一个结点含有子结点,则这个结点称为其子结点的父结点; 如上图: A 是 B 的父结点
孩子结点或子结点 :一个结点含有的子树的根结点称为该结点的子结点; 如上图: B 是 A 的孩子结点
根结点 :一棵树中,没有双亲结点的结点;如上图: A
结点的层次 :从根开始定义起,根为第 1 层,根的子结点为第 2 层,以此类推
树的高度或深度 :树中结点的最大层次; 如上图:树的高度为 4
树的以下概念只需了解,在看书时只要知道是什么意思即可:
非终端结点或分支结点 :度不为 0 的结点; 如上图: D 、 E 、 F 、 G... 等节点为分支结点
兄弟结点 :具有相同父结点的结点互称为兄弟结点; 如上图: B 、 C 是兄弟结点
堂兄弟结点 :双亲在同一层的结点互为堂兄弟;如上图: H 、 I 互为兄弟结点
结点的祖先 :从根到该结点所经分支上的所有结点;如上图: A 是所有结点的祖先
子孙 :以某结点为根的子树中任一结点都称为该结点的子孙。如上图:所有结点都是 A 的子孙
森林 :由 m ( m>=0 )棵互不相交的树组成的集合称为森林
1.3 树的表示形式
树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,实际中树有很多种表示方式,如: 双亲表示法 , 孩子表示法 、 孩子双亲表示法 、 孩子兄弟表示法 等等。我们这里就简单的了解其中最常用的 孩子兄弟表示法 。
class Node {int value ; // 树中存储的数据Node fifirstChild ; // 第一个孩子引用Node nextBrother ; // 下一个兄弟引用}
1.4 树的应用
文件系统管理(目录和文件)
2、 二叉树
2.1 概念
一棵二叉树是结点的一个有限集合,该集合:
1. 或者为空
2. 或者是由 一个根节 点加上两棵别称为 左子树 和 右子树 的二叉树组成
从上图可以看出:
1. 二叉树不存在度大于 2 的结点
2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
注意:对于任意的二叉树都是由以下几种情况复合而成的:
2.2 两种特殊的二叉树
1. 满二叉树 : 一棵二叉树,如果 每层的结点数都达到最大值,则这棵二叉树就是满二叉树 。也就是说, 如果一棵 二叉树的层数为 K ,且结点总数是 2的k次方减1 ,则它就是满二叉树 。
2. 完全二叉树 : 完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为 K 的,有 n个结点的二叉树,当且仅当其每一个结点都与深度为K 的满二叉树中编号从 0 至 n-1 的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。
2.3 二叉树的性质
1. 若规定 根结点的层数为 1 ,则一棵 非空二叉树的第 i 层上最多有 2的i次方减1 (i>0) 个结点
2. 若规定只有 根结点的二叉树的深度为 1 ,则 深度为 K 的二叉树的最大结点数是2的k次方减1
(k>=0)
3. 对任何一棵二叉树 , 如果其 叶结点个数为 n0, 度为 2 的非叶结点个数为 n2, 则有 n0 = n2 + 1
4. 具有 n 个结点的完全二叉树的深度 k 为log2(n+1) 上取整
5. 对于具有 n 个结点的完全二叉树 ,如果按照 从上至下从左至右的顺序对所有节点从 0 开始编号 ,则对于 序号为 i 的结点有 :
- 若i>0,双亲序号:(i-1)/2;i=0,i为根结点编号,无双亲结点
- 若2i+1<n,左孩子序号:2i+1,否则无左孩子
- 若2i+2<n,右孩子序号:2i+2,否则无右孩子
1. 某二叉树共有 399 个结点,其中有 199 个度为 2 的结点,则该二叉树中的叶子结点数为()A 不存在这样的二叉树B 200C 198D 1992. 在具有 2n 个结点的完全二叉树中,叶子结点数为(a )A nB n+1C n-1D n/23. 一个具有 767 个节点的完全二叉树,其叶子节点个数为(b)A 383B 384C 385D 3864. 一棵完全二叉树的节点数为 531 个,那么这棵树的度为(b)A 11B 10C 8D 12
2.4 二叉树的存储
二叉树的存储结构分为: 顺序存储 和 类似于链表的链式存储 。 二叉树的链式存储是通过一个一个的节点引用起来的,常见的表示方式有二叉和三叉表示方式 ,具体如下:
// 孩子表示法class Node {int val ; // 数据域Node left ; // 左孩子的引用,常常代表左孩子为根的整棵左子树Node right ; // 右孩子的引用,常常代表右孩子为根的整棵右子树}// 孩子双亲表示法class Node {int val ; // 数据域Node left ; // 左孩子的引用,常常代表左孩子为根的整棵左子树Node right ; // 右孩子的引用,常常代表右孩子为根的整棵右子树Node parent ; // 当前节点的根节点}
2.5 二叉树的基本操作
2.5.1 前置说明
public class BinaryTree
{
public static class BTNode
{
BTNode left;
BTNode right;
int value;BTNode(int value)
{
this.value = value;
}
}
private BTNode root;
public void createBinaryTree()
{
BTNode node1 = new BTNode(1);
BTNode node1 = new BTNode(2);
BTNode node1 = new BTNode(3);
BTNode node1 = new BTNode(4);
BTNode node1 = new BTNode(5);
BTNode node1 = new BTNode(6);
root = node1;
node1.left = node2;
node2.left = node3;
node1.right = node4;
node4.left = node5;
node5.right = node6;
}
}
注意:上述代码并不是创建二叉树的方式,真正创建二叉树方式后序详解重点讲解。
再看二叉树基本操作前,再回顾下二叉树的概念,二叉树是:
1. 空树
2. 非空:根节点,根节点的左子树、根节点的右子树组成的
从概念中可以看出,二叉树定义是递归式的,因此后序基本操作中基本都是按照该概念实现的。
2.5.2 二叉树的遍历
1. 前中后序遍历
学习二叉树结构,最简单的方式就是遍历。所谓遍历 (Traversal) 是指沿着某条搜索路线,依次对树中每个结 点均做一次且仅做一次访问 。 访问结点所做的操作依赖于具体的应用问题 ( 比如:打印节点内容、节点内容加 1) 。 遍历是二叉树上最重要的操作之一,是二叉树上进行其它运算之基础。
在遍历二叉树时,如果没有进行某种约定,每个人都按照自己的方式遍历,得出的结果就比较混乱,如果按照某种规则进行约定,则每个人对于同一棵树的遍历结果肯定是相同的。如果N代表根节点,L代表根节点的左子树,R代表根节点的右子树,则根据遍历根节点的先后次序有以下遍历方式:
- NLR:前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点--->根的左子树--->根的右子树。
- LNR:中序遍历(Inorder Traversal)——根的左子树--->根节点--->根的右子树。
- LRN:后序遍历(Postorder Traversal)——根的左子树--->根的右子树--->根节点。
下面主要分析前序递归遍历
前序遍历结果:1 2 3 4 5 6
中序遍历结果:3 2 1 5 4 6
后序遍历结果:3 1 5 6 4 1
2. 层序遍历
层序遍历:除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在层数为1 ,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第 2 层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。
1. 某完全二叉树按层次输出(同一层从左到右)的序列为 ABCDEFGH 。该完全二叉树的前序序列为 (a)A: ABDHECFG B: ABCDEFGH C: HDBEAFCG D: HDEBFGCA2. 二叉树的先序遍历和中序遍历如下:先序遍历: EFHIGJK; 中序遍历: HFIEJKG. 则二叉树根结点为 (a)A: E B: F C: G D: H3. 设一课二叉树的中序遍历序列: badce ,后序遍历序列: bdeca ,则二叉树前序遍历序列为 (d)A: adbce B: decab C: debac D: abcde4. 某二叉树的后序遍历序列中序遍a历序列相同,均为 ABCDEF ,则按层次输出 ( 同一层从左到右 ) 的序列为 (a)A: FEDCBA B: CBAFED C: DEFCBA D: ABCDEF
2.5.3 二叉树的基本操作
// 获取树中节点的个数
int size(Node root);
// 获取叶子节点的个数
int getLeafNodeCount(Node root);
// 子问题思路-求叶子结点个数
// 获取第K层节点的个数
int getKLevelNodeCount(Node root);
// 获取二叉树的高度
int getHeight(Node root);
// 检测值为value的元素是否存在
Node find(Node root, int val);
//层序遍历
void levelOrder(Node root);
// 判断一棵树是不是完全二叉树
boolean isCompleteTree(Node root);
2.6 二叉树相关oj题
1. 检查两颗树是否相同。
2. 另一颗树的子树。
3. 二叉树最大深度
4. 判断一颗二叉树是否是平衡二叉树。
5. 对称二叉树。
6. 二叉树的构建及遍历。
7. 二叉树的分层遍历 。
8. 给定一个二叉树 , 找到该树中两个指定节点的最近公共祖先 。
9. 二叉搜索树转换成排序双向链表。
10. 根据一棵树的前序遍历与中序遍历构造二叉树。
11. 根据一棵树的中序遍历与后序遍历构造二叉树
12. 二叉树创建字符串。
13. 二叉树前序非递归遍历实现 。
14. 二叉树中序非递归遍历实现。
15. 二叉树后序非递归遍历实现。
本文含有隐藏内容,请 开通VIP 后查看