深度学习基础之《TensorFlow框架(6)—张量》

发布于:2024-02-25 ⋅ 阅读:(53) ⋅ 点赞:(0)

一、张量

1、什么是张量
张量Tensor和ndarray是有联系的,当我们print()打印值的时候,它返回的就是ndarray对象

TensorFlow的张量就是一个n维数组,类型为tf.Tensor。Tensor具有以下两个重要的属性:
(1)type:数据类型
(2)shape:形状(阶)

2、张量的类型
张量,在计算机当中如何存储?

标量,一个数字
向量,一维数组 [2,3,4]
矩阵,二维数组 [[2,3,4],[2,3,4]]
张量,就是n维数组
    标量,可以看做0阶张量
    向量,可以看做1阶张量
    矩阵,可以看做2阶张量
    n维数组,n阶张量

数据类型 python类型 描述
DT_FLOAT tf.float32 32位浮点数
DT_DOUBLE tf.float64 64位浮点数
DT_INT64 tf.int64 64位有符号整数
DT_INT32 tf.int32 32位有符号整数
DT_INT16 tf.int16 16位有符号整数
DT_INT8 tf.int8 8位有符号整数
DT_UINT8 tf.uint8 8位无符号整数
DT_STRING tf.string 可变长度的字节数组,每一个张量元素都是一个字节数组
DT_BOOL tf.bool 布尔型
DT_COMPLEX64 tf.complex64 由两个32位浮点数组成的复数:实数和虚数
DT_QINT32 tf.qint32 用于量化Ops的32位有符号整型
DT_QINT8 tf.qint8 用于量化Ops的8位有符号整型
DT_QUINT8 tf.quint8 用于量化Ops的8位无符号整型

3、张量的阶
对应到ndarray的维数

数学实例 python 例子
0 纯量 只有大小 s = 483
1 向量 大小和方向 v = [1.1, 2.2, 3.3]
2 矩阵 数据表 m = [[1,2,3],[4,5,6],[7,8,9]]
3 3阶张量 数据立体 ...
n n阶张量 自己想想... ...
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
import tensorflow as tf

def tensorflow_demo():
    """
    TensorFlow的基本结构
    """

    # TensorFlow实现加减法运算
    a_t = tf.constant(2)
    b_t = tf.constant(3)
    c_t = a_t + b_t
    print("TensorFlow加法运算结果:\n", c_t)
    print(c_t.numpy())

    # 2.0版本不需要开启会话,已经没有会话模块了

    return None

def graph_demo():
    """
    图的演示
    """
    # TensorFlow实现加减法运算
    a_t = tf.constant(2)
    b_t = tf.constant(3)
    c_t = a_t + b_t
    print("TensorFlow加法运算结果:\n", c_t)
    print(c_t.numpy())

    # 查看默认图
    # 方法1:调用方法
    default_g = tf.compat.v1.get_default_graph()
    print("default_g:\n", default_g)

    # 方法2:查看属性
    # print("a_t的图属性:\n", a_t.graph)
    # print("c_t的图属性:\n", c_t.graph)

    # 自定义图
    new_g = tf.Graph()
    # 在自己的图中定义数据和操作
    with new_g.as_default():
        a_new = tf.constant(20)
        b_new = tf.constant(30)
        c_new = a_new + b_new
        print("c_new:\n", c_new)
        print("a_new的图属性:\n", a_new.graph)
        print("b_new的图属性:\n", b_new.graph)

    # 开启new_g的会话
    with tf.compat.v1.Session(graph=new_g) as sess:
        c_new_value = sess.run(c_new)
        print("c_new_value:\n", c_new_value)
        print("我们自己创建的图为:\n", sess.graph)

    # 可视化自定义图
    # 1)创建一个writer
    writer = tf.summary.create_file_writer("./tmp/summary")
    # 2)将图写入
    with writer.as_default():
        tf.summary.graph(new_g)

    return None

def session_run_demo():
    """
    feed操作
    """
    tf.compat.v1.disable_eager_execution()
    
    # 定义占位符
    a = tf.compat.v1.placeholder(tf.float32)
    b = tf.compat.v1.placeholder(tf.float32)
    sum_ab = tf.add(a, b)
    print("a:\n", a)
    print("b:\n", b)
    print("sum_ab:\n", sum_ab)
    # 开启会话
    with tf.compat.v1.Session() as sess:
        print("占位符的结果:\n", sess.run(sum_ab, feed_dict={a: 1.1, b: 2.2}))
 
    return None

def tensor_demo():
    """
    张量的演示
    """
    tensor1 = tf.constant(4.0)
    tensor2 = tf.constant([1, 2, 3, 4])
    linear_squares = tf.constant([[4], [9], [16], [25]], dtype=tf.int32)
    print("tensor1:\n", tensor1)
    print("tensor2:\n", tensor2)
    print("linear_squares:\n", linear_squares)
    return None

if __name__ == "__main__":
    # 代码1:TensorFlow的基本结构
    # tensorflow_demo()
    # 代码2:图的演示
    #graph_demo()
    # feed操作
    #session_run_demo()
    # 代码4:张量的演示
    tensor_demo()
python3 day01_deeplearning.py

tensor1:
 tf.Tensor(4.0, shape=(), dtype=float32)
tensor2:
 tf.Tensor([1 2 3 4], shape=(4,), dtype=int32)
linear_squares:
 tf.Tensor(
[[ 4]
 [ 9]
 [16]
 [25]], shape=(4, 1), dtype=int32)

创建张量的时候,如果不指定类型:
整型:默认tf.inf32
浮点型:默认tf.float32

二、创建张量的指令

1、固定值张量
tf.zeros(shape, dtype=tf.float32, name=None)
创建所有元素设置为零的张量
此操作返回一个具有dtype、shape和所有元素设置为零的类型的张量

tf.zeros_like(tensor, dtype=None, name=None)
给定一个张量tensor,该操作返回与所有元素设置为零的tensor具有相同类型和形状的张量

tf.ones(shape, dtype=tf.float32, name=None)
创建一个所有元素设置为1的张量
此操作返回一个具有dtype、shape和所有元素设置为1的类型的张量

tf.ones_like(tensor, dtype=None, name=None)
给定一个张量tensor,该操作返回与所有元素设置为1的tensor具有相同类型和形状的张量

tf.fill(dims, value, name=None)
创建一个填充了标量值的张量
此操作创建一个张量,形状为dims,并用value填充

tf.constant(value, dtype=None, shape=None, name='Const')
创建一个常数张量

2、随机值张量

一般我们经常使用的随机函数Math.random()产生的是服从均匀分布的随机数,能够模拟等概率出现的情况
例如,仍一个骰子,1到6点的概率应该相等,但现实生活中更多的随机现象是符合正态分布的,例如20岁成年人的体重分布等

假如我们在制作一个游戏,要随机设定许许多多NPC的升高,如果还用Math.random(),生成从140到220之间的数字,就会发现每个身高段的人数是一样多的,这是比较无趣的,这样的世界也与我们习惯不同,现实应该是特别高和特别矮的都很少,处于中间的人数最多,这就要求随机函数符合正态分布

tf.truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)
从截断的正态分布中输出随机值,和tf.random_normal()一样,但是所有数字都不超过两个标准差
mean:均值
stddev:标准差

tf.random_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)
从正态分布中输出随机值,由随机正态分布的数字组成的矩阵
mean:均值
stddev:标准差
 

本文含有隐藏内容,请 开通VIP 后查看

网站公告

今日签到

点亮在社区的每一天
去签到