矩阵的因子分解2-满秩分解

发布于:2025-02-11 ⋅ 阅读:(41) ⋅ 点赞:(0)

矩阵的因子分解2-满秩分解

题型:对 A ∈ C m × n A \in \mathbb{C}^{m \times n} ACm×n 进行满秩分解 A = B C A = BC A=BC

题目中为简化计算,都是取 C m × n \mathbb{C}^{m\times n} Cm×n的特殊情形: R m × n \mathbb{R}^{m\times n} Rm×n,如下也是按照 R m × n \mathbb{R}^{m\times n} Rm×n 来展开的

求法归纳

  1. 通过初等行变换将矩阵化为最简行阶梯形并确定矩阵的秩 r r r
  2. 从矩阵 A A A 中选择 r r r 个线性无关的列向量,构成矩阵 B B B
  3. 从最简行阶梯形矩阵中选择前 r r r 个非零行,构成矩阵 C C C

例1. 对矩阵 A = ( − 1 0 1 2 1 2 − 1 1 2 2 − 2 − 1 − 2 − 4 2 − 2 ) A = \begin{pmatrix} -1 & 0 & 1 & 2 \\ 1 & 2 & -1 & 1 \\2 & 2 & -2 & -1 \\-2 & -4 & 2 & -2\end{pmatrix} A= 1122022411222112 进行满秩分解

1. 通过初等行变换将矩阵化为最简行阶梯形并确定矩阵的秩 r r r

A = ( − 1 0 1 2 1 2 − 1 1 2 2 − 2 − 1 − 2 − 4 2 − 2 ) → ( 1 0 − 1 − 2 0 2 0 3 0 2 0 3 0 − 4 0 − 6 ) → ( 1 0 − 1 − 2 0 1 0 3 2 0 0 0 0 0 0 0 0 ) A=\begin{pmatrix} -1 & 0 & 1 & 2 \\ 1 & 2 & -1 & 1 \\ 2 & 2 & -2 & -1 \\ -2 & -4 & 2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & -2 \\ 0 & 2 & 0 & 3 \\ 0 & 2 & 0 & 3 \\ 0 & -4 & 0 & -6 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 0 & \frac{3}{2} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} A= 1122022411222112 1000022410002336 10000100100022300

2. 从矩阵 A A A 中选择 r r r 个线性无关的列向量,构成矩阵 B B B

B = ( − 1 0 1 2 2 2 − 2 − 4 ) B = \begin{pmatrix} -1 & 0 \\ 1 & 2 \\ 2 & 2 \\ -2 & -4 \end{pmatrix} B= 11220224

3. 从最简行阶梯形矩阵中选择前 r r r 个非零行,构成矩阵 C C C

C = ( 1 0 − 1 − 2 0 1 0 3 2 ) C = \begin{pmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 0 & \frac{3}{2} \end{pmatrix} C=(100110223)

验证:
A = B C = ( − 1 0 1 2 2 2 − 2 − 4 ) ( 1 0 − 1 − 2 0 1 0 3 2 ) = ( − 1 0 1 2 1 2 − 1 1 2 2 − 2 − 1 − 2 − 4 2 − 2 ) A=BC = \begin{pmatrix} -1 & 0 \\ 1 & 2 \\ 2 & 2 \\ -2 & -4 \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 0 & \frac{3}{2} \end{pmatrix} = \begin{pmatrix} -1 & 0 & 1 & 2 \\ 1 & 2 & -1 & 1 \\ 2 & 2 & -2 & -1 \\ -2 & -4 & 2 & -2 \end{pmatrix} A=BC= 11220224 (100110223)= 1122022411222112


网站公告

今日签到

点亮在社区的每一天
去签到