【时间复杂度和空间复杂度】

发布于:2025-02-18 ⋅ 阅读:(117) ⋅ 点赞:(0)

常见的时间复杂度

计算方法

1、确定输入规模:
输入规模通常用 n 表示,例如数组长度、链表长度等。

2、分析算法的执行步骤:
计算每个操作的执行次数。
确定操作的执行次数与输入规模的关系。

3、忽略常数和低阶项:
在大O表示法中,常数和低阶项可以忽略,只保留最高阶项。
例如,O(3n² + 2n + 1) 简化为 O(n²)。

举例:

假设有一个算法,其执行步骤如下:

arr = [1, 2, 3, 4, 5]
for i in arr:  # O(n)
    for j in arr:  # O(n)
        print(i, j)

外层循环:执行 n 次。
内层循环:每次外层循环执行 n 次。
总执行次数:n * n = n²。
时间复杂度:O(n²)。

 

  1. O(1):常数时间复杂度

    • 不论输入规模如何,算法的执行时间是固定的。

    • 示例:访问数组的某个元素。

      arr = [1, 2, 3]
      print(arr[1])  # 时间复杂度为 O(1)
  2. O(n):线性时间复杂度

    • 算法的执行时间与输入规模成正比。

    • 示例:遍历一个数组。

      arr = [1, 2, 3, 4, 5]
      for i in arr:
          print(i)  # 时间复杂度为 O(n)
  3. O(n²):二次时间复杂度

    • 算法的执行时间与输入规模的平方成正比。

    • 示例:嵌套循环。

      arr = [1, 2, 3, 4, 5]
      for i in arr:
          for j in arr:
              print(i, j)  # 时间复杂度为 O(n²)
  4. O(log n):对数时间复杂度

    • 算法的执行时间与输入规模的对数成正比。

    • 示例:二分查找。

      def binary_search(arr, target):
          left, right = 0, len(arr) - 1
          while left <= right:
              mid = (left + right) // 2
              if arr[mid] == target:
                  return mid
              elif arr[mid] < target:
                  left = mid + 1
              else:
                  right = mid - 1
          return -1  # 时间复杂度为 O(log n)
  5. O(n log n):线性对数时间复杂度

    • 算法的执行时间与输入规模的对数成正比。

    • 示例:快速排序、归并排序。

      def merge_sort(arr):
          if len(arr) <= 1:
              return arr
          mid = len(arr) // 2
          left = merge_sort(arr[:mid])
          right = merge_sort(arr[mid:])
          return merge(left, right)  # 时间复杂度为 O(n log n)

 

 空间复杂度

定义:空间复杂度是指算法在运行过程中消耗的内存资源量级,通常用输入规模(如数组长度、链表长度等)来表示。

表示方法:空间复杂度也用大O符号(O)表示,例如 O(1)、O(n)、O(n²) 等。

计算方法

1)确定输入规模:
输入规模通常用 n 表示,例如数组长度、链表长度等。

2)分析算法使用的额外内存:
计算算法中使用的额外空间(如变量、数组、递归栈等)。
确定额外空间的使用量与输入规模的关系。

3)忽略常数和低阶项:
在大O表示法中,常数和低阶项可以忽略,只保留最高阶项。
例如,O(3n² + 2n + 1) 简化为 O(n²)。

 

假设有一个算法,其执行步骤如下:

Python复制

def merge_sort(arr):
    if len(arr) <= 1:
        return arr
    mid = len(arr) // 2
    left = merge_sort(arr[:mid])  # 创建左半部分数组
    right = merge_sort(arr[mid:])  # 创建右半部分数组
    return merge(left, right)  # 合并两个数组
  • 递归调用:每次递归调用会创建两个子数组。

  • 空间复杂度

    • 每次递归调用创建的子数组占用 O(n) 的空间。

    • 递归深度为 O(log n)。

    • 总空间复杂度为 O(n)(递归栈空间)。

常见的空间复杂度

  1. O(1):常数空间复杂度

    • 不论输入规模如何,算法使用的额外内存是固定的。

    • 示例:交换两个变量的值。

      a, b = 1, 2
      a, b = b, a  # 空间复杂度为 O(1)
  2. O(n):线性空间复杂度

    • 算法使用的额外内存量与输入规模成正比。

    • 示例:复制一个数组。

      arr = [1, 2, 3, 4, 5]
      new_arr = arr[:]  # 空间复杂度为 O(n)
  3. O(n²):二次空间复杂度

    • 算法使用的额外内存量与输入规模的平方成正比。

    • 示例:创建一个二维数组。

      arr = [[0] * n for _ in range(n)]  # 空间复杂度为 O(n²)