生成了一个AI算法

发布于:2025-05-07 ⋅ 阅读:(8) ⋅ 点赞:(0)

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms

# 1. 数据预处理
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5,), (0.5,)) # MNIST单通道归一化
])
train_data = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
test_data = datasets.MNIST(root='./data', train=False, transform=transform)

# 2. 模型定义
class NeuralNetwork(nn.Module):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.layers = nn.Sequential(
            nn.Linear(28*28, 128), # 输入层
            nn.ReLU(),             # 激活函数
            nn.Dropout(0.2),       # 防过拟合
            nn.Linear(128, 10)     # 输出层(10分类)
        )
    def forward(self, x):
        x = self.flatten(x)
        return self.layers(x)

# 3. 训练配置
model = NeuralNetwork()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
batch_size = 64
train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=True)

# 4. 训练循环
for epoch in range(10):
    for images, labels in train_loader:
        outputs = model(images)
        loss = criterion(outputs, labels)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

# 5. 评估
test_loader = torch.utils.data.DataLoader(test_data, batch_size=256)
correct = 0
with torch.no_grad():
    for images, labels in test_loader:
        outputs = model(images)
        _, predicted = torch.max(outputs, 1)
        correct += (predicted == labels).sum().item()
print(f'准确率: {100 * correct / len(test_data):.2f}%')


网站公告

今日签到

点亮在社区的每一天
去签到